DOI QR코드

DOI QR Code

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M. (Yunnan Astronomical Observatory, NAOC, Chinese Academy of Sciences) ;
  • LEE MYUNG GYONG (Astronomy Program, SEES, Seoul National University)
  • Published : 2005.06.01

Abstract

In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

Keywords

galaxies: active;galaxies: jets;quasars: general;radiation mechanism: nonthermal;gamma-rays: theory;X-rays: galaxies

References

  1. Aharonian, F. A., et al., 2002, A&A, 384, L23 https://doi.org/10.1051/0004-6361:20020206
  2. Aharonian, F. A., et al., 2004, A&A, 421, 529 https://doi.org/10.1051/0004-6361:20035764
  3. Bai, J. M., & Lee, M. G., 2001, ApJ, 549, L173 https://doi.org/10.1086/319177
  4. Blandford, R. D., & Levinson, A., 1995, ApJ, 441, 79 https://doi.org/10.1086/175338
  5. Blazejowski, M., et al., 2000, ApJ, 545, 107 https://doi.org/10.1086/317791
  6. Dermer, C. D., & Schlickeiser, R., 1993, ApJ, 416, 458 https://doi.org/10.1086/173251
  7. Fossati, G., Maraschi, L., Celotti, A., et al., 1998, MNRAS, 299,433 https://doi.org/10.1046/j.1365-8711.1998.01828.x
  8. Ghisellini, G., & Maraschi, L., 1989, ApJ, 430, 181
  9. Ghisellini, G., & Madau, P., 1996, MNRAS, 280, 67 https://doi.org/10.1093/mnras/280.1.67
  10. Hartman, R. C., et al., 2001, ApJ, 553, 683 https://doi.org/10.1086/320970
  11. Hartman, R. C., et al., 1999, ApJS, 123, 79 https://doi.org/10.1086/313231
  12. Holder, J., et al., 2003, ApJ, 583, L9 https://doi.org/10.1086/367816
  13. Konigl, A., 1981, ApJ, 243, 700 https://doi.org/10.1086/158638
  14. Kubo, H., et al., 1998, ApJ, 504, 693 https://doi.org/10.1086/306125
  15. Lister, M. L., 2003, in ASP Conf. Ser. 300, Radio Astronomy at the Fringe, ed. J. A. Zensus, M. H. Cohen, & E. Ros (San Francisco: ASP), 71
  16. Marscher, A. P., & Gear, W. K., 1985, ApJ, 298, 114 https://doi.org/10.1086/163592
  17. Mattox, J. T., et al., 1997, 481, 95 https://doi.org/10.1086/304039
  18. McNaron-Brown, K., et al., 1995, ApJ, 451, 575 https://doi.org/10.1086/176245
  19. Mukherjee, R., et al., 1999, ApJ, 527, 132 https://doi.org/10.1086/308057
  20. Mukherjee, R., et al., 1997, ApJ, 490, 116 https://doi.org/10.1086/304851
  21. O'Dea, C. P., 1998, PASP, 110, 493 https://doi.org/10.1086/316162
  22. O'Dea, C. P., Baum, S.A., & Stanghellini, C., 1991, ApJ, 380, 66 https://doi.org/10.1086/170562
  23. Reeves, J. N., & Turner, M. J. L., 2000, MNRAS, 316, 234 Processes in Astrophysics (New York: Wiley)
  24. Sambruna, R., 1997, A&AS, 487, 536
  25. Schonfelder V., et al., 2000, A&AS, 143, 145 https://doi.org/10.1051/aas:2000101
  26. Siemiginowska, A., et al., 2002, ApJ, 570, 543 https://doi.org/10.1086/339629
  27. Siemiginowska, A., et al., 2003, PASA, 20, 113 https://doi.org/10.1071/AS02052
  28. Sikora, M., Begelman, M., & Rees, M., 1994, ApJ, 421, 153 https://doi.org/10.1086/173633
  29. Sikora, M. et al., 2002, ApJ, 577, 78 https://doi.org/10.1086/342164
  30. Stanghellini, C., et al., 1998, A&AS, 131, 303 https://doi.org/10.1051/aas:1998270
  31. Stanghellini, C., et al., 2001, A&A, 377, 377 https://doi.org/10.1051/0004-6361:20011101
  32. Stickel, M., Meisenheimer, K., & Kuhr, H., 1994, A&AS, 105, 211
  33. Tavecchio, F., et al., 1998, ApJ, 509, 608 https://doi.org/10.1086/306526
  34. Thompson, D. J., et al., 1995, ApJs, 101, 259 https://doi.org/10.1086/192240
  35. Ulrich, M.-H., Maraschi, L., & Urry, C. M., 1997, ARA&A, 35, 455
  36. Urry, C. M., 1999, in ASP Conf. Ser. 159, BL Lac Phenomenon, ed. L.O. Takalo, A. Sillanpaa (San Francisco: ASP), p3
  37. Urry, C.M., et al., 1997, ApJ, 486, 799 https://doi.org/10.1086/304536
  38. Wagner, S. J., et al., 1995, A&A, 298, 688
  39. Wehrle, A.E., & Cohen, M. 1989, ApJ, 346, L69 https://doi.org/10.1086/185581
  40. Zdziarski, A. A. 1986, ApJ, 305, 45 https://doi.org/10.1086/164227
  41. Zhang, Y. F., Marscher, A. P., Aller, H. D., et al., 1994, ApJ, 432, 91 https://doi.org/10.1086/174551
  42. Brinkmann, et al., 1997, A&A, 319, 413

Cited by

  1. Multifrequency study of GHz-peaked spectrum sources and candidates with the RATAN-600 radio telescope vol.544, 2012, https://doi.org/10.1051/0004-6361/201118506
  2. Gigahertz-peaked spectrum (GPS) galaxies and quasars vol.68, pp.3, 2013, https://doi.org/10.1134/S1990341313030036
  3. Possible γ-ray emission of radio intermediate AGN III Zw 2 and its implication on the evolution of jets in AGNs vol.10, pp.8, 2010, https://doi.org/10.1088/1674-4527/10/8/001