DOI QR코드

DOI QR Code

FORMALISM FOR THE SUBHALO MASS FUNCTION IN THE TIDAL-LIMIT APPROXIMATION

  • LEE JOUNGHUN (School of Physics, Korea Institute for Advanced Study)
  • Published : 2005.06.01

Abstract

We present a theoretical formalism by which the global and the local mass functions of dark matter substructures (dark subhalos) can be analytically estimated. The global subhalo mass function is defined to give the total number density of dark subhalos in the universe as a function of mass, while the local subhalo mass function counts only those sub halos included in one individual host halo. We develop our formalism by modifying the Press-Schechter theory to incorporate the followings: (i) the internal structure of dark halos; (ii) the correlations between the halos and the subhalos; (iii) the subhalo mass-loss effect driven by the tidal forces. We find that the resulting (cumulative) subhalo mass function is close to a power law with the slope of ${\~}$ -1, that the subhalos contribute approximately $10\%$ of the total mass, and that the tidal stripping effect changes the subhalo mass function self-similarly, all consistent with recent numerical detections.

Keywords

cosmology: theory;large-scale structure of universe

References

  1. Blanton, M. R., 2003, preprint (astro-ph/0304315)
  2. Bond, J. R., & Efstathious, G., 1984, ApJ, 285, 45 https://doi.org/10.1086/184362
  3. De Lucia, G., Kauffmann, G., Sprin'gel, V., White, S. D. M., 2004, MNRAS, 348, 333 https://doi.org/10.1111/j.1365-2966.2004.07372.x
  4. Fujita, Y., Sarazin, C. L., Nagashima, M., & Yano, T., 2002, ApJ, 577, 11 https://doi.org/10.1086/342148
  5. Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., & Stadel, J., 2000, ApJ, 544, 616 https://doi.org/10.1086/317221
  6. Gunn, J. E., & Gott, J. R., 1972, ApJ, 176, 1 https://doi.org/10.1086/181020
  7. Hayashi, E., Navarro, J. F., Taylor, J. E., Stadel J., Quinn, T., 2002, ApJ, 584, 541 https://doi.org/10.1086/345788
  8. Jedamzik, K., 1995, ApJ, 448, 1 https://doi.org/10.1086/175936
  9. , 1996, ApJ, 469, 480 https://doi.org/10.1086/177797
  10. Klypin, A., Kravtsov, A., Valenzuela, O., & Prada, F., 1999, ApJ, 522, 82 https://doi.org/10.1086/307643
  11. Navarro, J. F., Frenk, C. S., & White, S. D. M., 1996, ApJ, 462, 563 https://doi.org/10.1086/177173
  12. Okamoto, T., & Habe, A., 1999, ApJ, 516, 591 https://doi.org/10.1086/307126
  13. Peacock, J. A., & Heavens, A. F., 1990, MNRAS, 243, 133 https://doi.org/10.1093/mnras/243.1.133
  14. Press, W., & Schechter, P., 1974, ApJ, 187, 425 https://doi.org/10.1086/152650
  15. Springel, V., White, S. D. M., Trmen, G., Kauffmann, G., 2001, MNRAS, 328, 726 https://doi.org/10.1046/j.1365-8711.2001.04912.x
  16. Sheth, R. K., 2003, preprint
  17. Tormen, G., Diaferio, A., & Syer, D., 1998, MNRAS, 299, 728 https://doi.org/10.1046/j.1365-8711.1998.01775.x
  18. White, S. D. M., & Rees, M. J., 1978, ApJ, 183, 341
  19. Yano, T., Nagashima, M., & Gouda, N., 1996, ApJ, 466, 1 https://doi.org/10.1086/177488
  20. Zhang, B., Wyse, R. F. G., Stiavelli, M., Silk, J., 2002, MNRAS, 332, 647 https://doi.org/10.1046/j.1365-8711.2002.05314.x
  21. Zentner, A. R., & Bullock, J. S., 2003, preprint (astroph/0304292)