DOI QR코드

DOI QR Code

DARK ENERGY REFLECTIONS IN THE REDSHIFT-SPACE QUADRUPOLE

  • NISHIOKA HIROAKI (Institute of Astronomy and Astrophysics, Academia Sinica) ;
  • YAMAMOTO KAZUHIRO (Department of Physical Science, Hiroshima University) ;
  • BASSETT BRUCE A. (Department of Physics, Kyoto University, Institute of Cosmology and Gravitation, University of Portsmouth)
  • Published : 2005.06.01

Abstract

We show that next-generation galaxy surveys such as KAOS (the Kilo-Aperture Optical Spectro-graph)will constrain dark energy even if the baryon oscillations are missing from the monopole power spectrum and the bias is scale- and time-dependent KAOS will accurately measure the quadrupole power spectrum which gives the leading anisotropies in the power spectrum in redshift space due to peculiar velocities, the finger of God effect, as well as the Alcock-Paczynski effect. The combination of monopole and quadrupole power spectra powerfully breaks the degeneracy between the bias parameters and dark energy and, in the complete absence of baryon oscillations ($\Omega$b = 0), leads to a roughly $500\%$ improvement in constraints on dark energy compared with the monopole spectrum alone. As a result, for KAOS the worst case with no oscillations has dark energy errors only mildly degraded relative to the ideal case, providing insurance on the robustness of KAOS constraints on dark energy. We show that nonlinear effects are crucial in correctly evaluating the quadrupole and significantly improving the constraints on dark energy when we allow for multi-parameter scale-dependent bias.

Keywords

cosmological parameters;cosmology: theory;galaxies: distances and redshifts;large-scale structure of universe;methods: analytical

References

  1. Alcock, C., & Paczynski, B., 1979, Nature, 281, 358 https://doi.org/10.1038/281358a0
  2. Amendola, L., Quercellini, C., & Giallongo, E., 2004, arXiv:astro-ph/0404599
  3. Ballinger, W. E., Peacock, J.A., & Heavens, A. F., 1996, MNRAS, 282, 877 https://doi.org/10.1093/mnras/282.3.877
  4. Blake, C., & Glazebrook, K., 2003 ,ApJ, 594, 665 https://doi.org/10.1086/376983
  5. Eisenstein, D., 2003, Proc. WFMOS conference, arXiv:astroph/0301623
  6. Feldman, H. A., Kaiser, N. & Peacock, J. A., 1994, ApJ, 426, 23 https://doi.org/10.1086/174036
  7. Hu, W., & Haiman, Z., 2003, PRD, 68, 063004 https://doi.org/10.1103/PhysRevD.68.063004
  8. Kaiser, N., 1987 MNRAS, 227, 1 https://doi.org/10.1093/mnras/227.1.1
  9. KAOS, http://www.noao.edu/kaos/
  10. Linder, E. V., PRD, 2003, 68, 083504 https://doi.org/10.1103/PhysRevD.68.083504
  11. Ma, C-P., Caldwell, R. R., Bode, P., & Wang L., 1999, ApJL, 521, L1 https://doi.org/10.1086/312183
  12. Magira, H., Jing, Y. P., & Suto, Y., 1997, ApJ, 528, 30 https://doi.org/10.1086/308170
  13. Matsubara, T., & Suto, Y., 1996, ApJ, 470, L1 https://doi.org/10.1086/177845
  14. Matsubara, T. & Szalay, A. S., 2003, PRL., 90, 1302
  15. Miller, C. J., Nichol, R. C., & Chen, X. I., 2002, ApJ, 579, 483 https://doi.org/10.1086/342795
  16. Mo, H-J., Jing, Y. P., & Boerner, G., 1997, MNRAS, 286, 979 https://doi.org/10.1093/mnras/286.4.979
  17. Peacock, J. A. et al. ., 2001, Nature, 410, 169 https://doi.org/10.1038/35065528
  18. Peacock, J. A. & Dodds, S. J., 1994, MNRAS, 267, 1020 https://doi.org/10.1093/mnras/267.4.1020
  19. Seo, H-J, & Eisenstein, D. J., 2003, ApJ, 598, 720 https://doi.org/10.1086/379122
  20. Suto, Y., Magira, H., Jing, Y. P., Matsubara, T., & Yamamoto, K., 1999, PTPS. 133, 183
  21. Suto, Y., Magira, H., & Yamamoto, K., 2000, PASJ, 52, 249 https://doi.org/10.1093/pasj/52.2.249
  22. Taylor, A. N., & Hamilton A. J. S., 1996,MNRAS, 282, 767 https://doi.org/10.1093/mnras/282.3.767
  23. Tegmark, M., & Peebles, P. J. E., 1998, ApJ, 500, L79
  24. Wang, L., & Steinhardt, P. J., 1998, ApJ, 508, 483 https://doi.org/10.1086/306436
  25. Yamamoto, K., 2003, ApJ, 595, 577 https://doi.org/10.1086/377488
  26. Yamamoto, K., Bassett, B. A., & Nishioka, H., 2005,PRL, in press, arXiv:astro-ph/0409207
  27. Yamamoto, K., 2004,ApJ, 605, 620 https://doi.org/10.1086/382496