DOI QR코드

DOI QR Code

CHANDRA SPECTROSCOPY OF SUPERNOVA REMNANT 3C 391

  • CHEN YANG (Department of Astronomy, Nanjing University) ;
  • SU YANG (Department of Astronomy, Nanjing University) ;
  • SLANE PATRICK O. (Harvard-Smithsonian Center for Astrophysics) ;
  • WANG Q. DANIEL (Department of Astronomy, B619E-LGRT, University of Massachusetts)
  • Published : 2005.06.01

Abstract

We performed a spatially resolved spectroscopic study of the thermal composite supernova remnant 3C 391 by the Chandra observation. Broad- and narrow-band X-ray images show a southeast-northwest elongated morphology and unveil a highly clumpy structure of the remnant. The spectral analysis for. the small-scale features indicates normal metal abundance and uniform temperature for the interior gas. The properties of the hot gas are largely in agreement with the cloudlet evaporation model as a main mechanism for the 'thermal composite' X-ray appearance, though radiative rim and thermal conduction may also be effective. An unresolved X-ray source, with a power-law spectrum, is observed on the northwest border. The equivalent width images reveal a faint finger-like protrusion in Si and S lines out of the southwest radio border.

Keywords

radiation mechanisms: thermal;supernova remnants: individual: 3C 391 (G31.9+0.0);X-rays: ISM

References

  1. Chen, Y., & Slane, P. O., 2001, ASCA Observations of the Thermal Composite Supernova Remnant 3C 391, ApJ, 563, 202 https://doi.org/10.1086/323886
  2. Cox, D. P., Shelton, R. L., Maciejewski, W., Smith, R. K., Plewa, T., Pawl, A., & Rozyczka, M., 1999, ApJ, 524, 179 https://doi.org/10.1086/307781
  3. Frail, D. A., Goss, W. M., Reynoso, E.M., Giacani, E. B., Green, A. J., & Otrupcek, R., 1996, AJ, 111, 1651 https://doi.org/10.1086/117904
  4. Green, A. J., Frail, D. A., Goss, W. M., & Otrupcek, R. 1997, AJ, 114, 2058 https://doi.org/10.1086/118626
  5. Jones, T. W. et al., 1998, PASP, 110, 125 https://doi.org/10.1086/316122
  6. Hwang, U., Holt, S. S., & Petre, R., 2000, ApJ, 537, L119 https://doi.org/10.1086/312776
  7. Hwang, U. et al., 2004, ApJ, 615, L117 https://doi.org/10.1086/426186
  8. Moffett, D. A., & Reynolds, S. P., 1994, ApJ, 425, 668 https://doi.org/10.1086/174013
  9. Petruk, O., 2001, A&A, 371, 267 https://doi.org/10.1051/0004-6361:20010312
  10. Reach, W. T., & Rho, J. H., 1999, ApJ, 511, 836 https://doi.org/10.1086/306703
  11. Reach, W. T., Rho, J. H., & Jarrett, T. H., 2002, ApJ, 564, 302 https://doi.org/10.1086/324075
  12. Rho, J. H., & Petre, R., 1998, ApJ, 503, L167 https://doi.org/10.1086/311538
  13. White, R. L., & Long, K. S., 1991, ApJ, 373, 543 https://doi.org/10.1086/170073
  14. Wilner, D. J., Reynolds, S. P., & Moffett, D. A., 1998, ApJ, 115, 247 https://doi.org/10.1086/300190
  15. Yusef-Zadeh, F., Wardle, M., Rho, J., & Sakano, M., 2003, ApJ, 585, 319 https://doi.org/10.1086/345932