DOI QR코드

DOI QR Code

HIGH ANGULAR RESOLUTION [Fe II] λ1.644 μ SPECTROSCOPY OF YSOS WITH SUBARU TELESCOPE

  • PYO TAE-SOO (Subaru Telescope, National Astronomical Observatory of Japan) ;
  • HAYASHI MASAHIKO (Subaru Telescope, National Astronomical Observatory of Japan) ;
  • NAOTO KOBAYASHI (Institute of Astronomy, University of Tokyo, Mitaka) ;
  • TERADA HIROSHI (Subaru Telescope, National Astronomical Observatory of Japan) ;
  • TOKUNAGA ALAN T. (Institute for Astronomy, University of Hawaii)
  • Published : 2005.06.01

Abstract

We present results of the velocity-resolved spectroscopy of the [Fe II] $\lambda$1.644${\mu}m$ emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.apos;16 ${\~}$ 0.apos;5 arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.apos;1 = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 km $s^{-l}$) and the low velocity component (LVC: 50 - 150 km $s^{-l}$), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 $\mu$ spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.

Keywords

ISM: Herbig-Haro objects;ISM: individual(L1551 IRS 5, DG Tauri, HL Tauri, RW Aurigae);ISM: jets and outflows;stars: formation;stars: pre-main-sequence;techniques: high angular resolution

References

  1. Bacciotti, F., Ray, T. P., Mundt, R., Eisloffel, J., & Solf, J., 2002, ApJ, 576, 222 https://doi.org/10.1086/341725
  2. Cabrit, S., Edwards, S., Strom, E. S., & Strom, M. K., 1990, ApJ, 354, 687 https://doi.org/10.1086/168725
  3. Close, L. M., Roddier, M., J., Northcott, C., Roddier, C., & Graves, J. E., 1997, ApJ, 478, 766 https://doi.org/10.1086/303813
  4. Coffey, D., Bacciotti, F., Ray, T. P., Woitas, & J., Eisloffel, J., 2004, ApJ, 604, 758 https://doi.org/10.1086/382019
  5. Davis, C. J., Whelan, E., Ray, T. P., & Chrysostomou, A., 2003, A&A, 397, 693 https://doi.org/10.1051/0004-6361:20021545
  6. Edwards, S., Ray, T. P., & Mundt, R., 1993, in Protostars and Planets III, ed. E. H. Levy, & J. I. Lunine (Tucson: Univ. Arizona Press), 567
  7. Ferreira, J., 1997 A&A, 319, 340
  8. Goodson, A. P., Bohm, K. H., & Winglee, R. M., 1999, ApJ, 524, 142 https://doi.org/10.1086/307779
  9. Hartigan, P., Edwards, S., & Ghandour, L., 1995, ApJ, 452, 736 https://doi.org/10.1086/176344
  10. Hayashi, M. R., Shibata, K., & Matsumoto, R., 1996, ApJ, 468, L37 https://doi.org/10.1086/310222
  11. Hayashi, M., Ohashi, N., & Miyama, S. M., 1993, ApJ, 418, L71 https://doi.org/10.1086/187119
  12. Kitamura, Y., Kawabe, R., & Saito, M., 1996, ApJ, 457, 277 https://doi.org/10.1086/176728
  13. Kobayashi, N., et al., 2000, Proc. SPIE, 4008, 1056 https://doi.org/10.1117/12.395423
  14. Konigl, A., & Pudritz, R., 2000, in Protostars and Planets IV, eds. V. Mannings, A. P. Boss, S. S. Russell (Tuscon: Univ. Arizona Press), 759
  15. Kudoh, T., & Shibata, K., 1997a, ApJ, 474, 362 https://doi.org/10.1086/303437
  16. Kudoh, T., & Shibata, K., 1997b, ApJ, 476, 632 https://doi.org/10.1086/303635
  17. Kwan, J., & Tademaru, E., 1988, ApJ, 332, L41 https://doi.org/10.1086/185262
  18. Kwan, J., & Tademaru, E., 1995, ApJ, 454, 382 https://doi.org/10.1086/176489
  19. Momose, M., Ohashi, N., Kawabe, R., Nakano, T., & Hayashi, M., 1998, ApJ, 504, 314 https://doi.org/10.1086/306061
  20. Nisini, B., Caratti o Garatti, A., Giannini, & T., Lorenzetti, D., 2002, A&A, 393, 1035 https://doi.org/10.1051/0004-6361:20021062
  21. Pesenti, N., Dougados, C., Cabrit, S., O'Brien, D., Garcia, P., & Ferreira, J., 2003, A&A, 410, 155 https://doi.org/10.1051/0004-6361:20031131
  22. Pyo, T.-S., Hayashi, M., Kobayashi, N., et al., 2004b, ApJ, 618, 817 https://doi.org/10.1086/426103
  23. Pyo, T.-S., Hayashi, M., Kobayashi, N., et al., 2004a, AAS, 204, 8207
  24. Pyo, T.-S., Hayashi, M., Kobayashi, N., et al., 2002, ApJ, 570, 724 https://doi.org/10.1086/339728
  25. Pyo, T.-S., Kobayashi, N., Hayashi, M., et al., 2003, ApJ, 590, 340 https://doi.org/10.1086/374966
  26. Reipurth, B., Yu, K. C., Heathcote, S., Bally, J., & Rodriguez, F., 2000, AJ, 120, 1449 https://doi.org/10.1086/301510
  27. Shibata, K., & Uchida, Y., 1986, PASJ, 38, 631
  28. Shu, F. H., Najita, J. R., Shang, H., & Li, Z.-Y., 2000, in Protostars and Planets IV, eds. V. Mannings, A. P. Boss, S. S. Russell (Tucson: Univ. Arizona Press), 789
  29. Takami, H. et al., 2004, PASJ, 56, 225 https://doi.org/10.1093/pasj/56.1.225
  30. Tokunaga, A. T., et al., 1998, Proc. SPIE, 3354, 512 https://doi.org/10.1117/12.317277
  31. Ungerechts, H., & Thaddeus, P., 1987, ApJS, 63, 645 https://doi.org/10.1086/191176
  32. Woitas, J., Ray, T. P., Bacciotti, F., Davis, C. J., & Eisloffel, J., 2002, ApJ, 580, 336 https://doi.org/10.1086/343124

Cited by

  1. Theory of Star Formation vol.45, pp.1, 2007, https://doi.org/10.1146/annurev.astro.45.051806.110602