DOI QR코드

DOI QR Code

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G. (Korea Astronomy Observatory, Special Astrophysical Observatory, Russian Academy of Sciences) ;
  • KOCHUKHOV O. (Institute for Astronomy, University of Vienna) ;
  • SHULYAK D. (Simpheropol State University) ;
  • LEE B.-C. (Korea Astronomy Observatory) ;
  • GALAZUTDINOV G. (Korea Astronomy Observatory, Special Astrophysical Observatory, Russian Academy of Sciences) ;
  • KIM K.-M. (Korea Astronomy Observatory) ;
  • HAN I. (Korea Astronomy Observatory)
  • Published : 2005.06.01

Abstract

The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.

Keywords

stars: chemically peculiar;stars: magnetic fields;stars: atmospheres

References

  1. Bagnulo, S., Landi Degl'Innocenti, M., Landolfi, M., & Mathys, G., 2002, A&A 394, 1023 https://doi.org/10.1051/0004-6361:20021221
  2. Carpenter, K. G., 1985, ApJ, 289, 660 https://doi.org/10.1086/162929
  3. Galazutdinov, G., 2004, private communication
  4. Kim, K. M., Jang, J. G., Chun, M. Y., Park, B. G., Hyung, S., Han, I., Yoon, T. S., & Vogt, S. S., 2000, Publication of the Korean Astronomical Society, 15S, 119 (in Korean)
  5. Kroll, R., 1989, Rev. Mex. Astron. Astrofis. 2, 194 https://doi.org/10.1007/978-3-642-75183-7_18
  6. Landstreet, J. D., 1987, MNRAS, 225, 437 https://doi.org/10.1093/mnras/225.2.437
  7. Landstreet, J. D., 2001, In: Magnetic Fields Across Hertzsprung-Russell Diagram, G. Mathys, S.K. Solanki and D.T. Wick-ramasinghe (eds.), ASP Conf. Ser., 248, 277
  8. LeBlanc, F., Michaud, G., & Babel, J., 1994, ApJ, 431, 388 https://doi.org/10.1086/174492
  9. Madej, J., 1983a, Acta Atron., 33, 1
  10. Madej, J., 1983b, Acta Atron., 33, 1
  11. Madej, J., Jahn, K., & Stepien, K., 1984, Acta Atron., 34, 419
  12. Moss, D., 1984, MNRAS, 207, 107 https://doi.org/10.1093/mnras/207.1.107
  13. Musielok, B., & Madej, J., 1988, A&A, 202, 143
  14. Peterson, D. M., & Theys, J. C., 1981, ApJ, 244, 947 https://doi.org/10.1086/158769
  15. Stepien, K., 1978, A&A, 70, 509
  16. Valyavin, G., Kochukhov, & O., Piskunov, N., 2004, A&A 420, 993 https://doi.org/10.1051/0004-6361:20034345
  17. Wade, G., Donati, J.-F., Landstreet, J. D., & Shorlin, S. L. S., 2000, MNRAS, 313, 851 https://doi.org/10.1046/j.1365-8711.2000.03271.x

Cited by

  1. Atmospheric models of He-peculiar stars: synthetic He I line profiles and absolute visual magnitudes vol.352, pp.1, 2014, https://doi.org/10.1007/s10509-014-1886-y
  2. The helium weak silicon star HR 7224 vol.471, pp.3, 2007, https://doi.org/10.1051/0004-6361:20077700