DOI QR코드

DOI QR Code

Synthesis and Crystal Structure of Ag4Br4 Nanoclusters in the Sodalite Cavities of Fully K+-Exchanged Zeolite A (LTA)

  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University) ;
  • Choi, Sik-Young (Department of Applied Chemistry, Andong National University) ;
  • Kim, Bok-Jo (School of Herb Medicine Resource, Kyungwoon University) ;
  • Kim, Chang-Min (Department of Chemistry, Kyungpook National University) ;
  • Lee, In-Su (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Seok-Han (Department of Applied Chemistry, Kyungpook National University) ;
  • Heo, Nam-Ho (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2005.07.20

Abstract

$Ag_4Br_4$ nanoclusters have been synthesized in about 75% of the sodalite cavities of fully $K^+$-exchanged zeolite A (LTA). An additional KBr molecule is retained in each large cavity as part of a near square-planar $K_4Br^{3+}$ cation. A single crystal of $Ag_{12}$-A, prepared by the dynamic ion-exchange of $Na_{12}$-A with aqueous 0.05 M $AgNO_3$ and washed with $CH_3OH$, was placed in a stream of flowing 0.05 M KBr in $CH_3OH$ for two days. The crystal structure of the product ($K_9(K_4Br)Si_{12}Al_{12}O_{48}{\cdot}0.75Ag_4Br_4$, a = 12.186(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm m. It was refined with all measured reflections to the final error index $R_1$ = 0.080 for the 99 reflections for which $F_o\;{\gt}\;4_{\sigma}\;(F_o)$. The thirteen $K^+$ ions per unit cell are found at three crystallographically distinct positions: eight $K^+$ ions in the large cavity fill the six-ring site, three $K^+$ ions fill the eight-rings, and two $K^+$ ions are opposite four-rings in the large cavity. One bromide ion per unit cell lies opposite a four-ring in the large cavity, held there by two eight-ring and two six-ring $K^+$ ions ($K_4Br^{3+}$). Three $Ag^+$ and three $Br^-$ions per unit cell are found on 3-fold axes in the sodalite unit, indicating the formation of nano-sized $Ag_4Br_4$ clusters (interpenetrating tetrahedra; symmetry $T_d$; diameter ca. 7.9 $\AA$) in 75% of the sodalite units. Each cluster (Ag-Br = 2.93(3) $\AA$) is held in place by the coordination of its four $Ag^+$ ions to the zeolite framework (each $Ag^+$ cation is 2.52(3) $\AA$ from three six-ring oxygens) and by the coordination of its four $Br^-$ ions to $K^+$ ions through six-rings (Br-K = 3.00(4) $\AA$).

References

  1. Stein, A.; Ozin, G. A.; Stucky, G. D. J. Am. Chem. Soc. 1992, 114, 8119 https://doi.org/10.1021/ja00047a021
  2. Stein, A.; Ozin, G. A.; Stucky, G. D. J. Am. Chem. Soc. 1990, 112, 904 https://doi.org/10.1021/ja00158a080
  3. Kodaira, T.; Ikeda, T.; Takeo, H. Eur. Phys. J. D 1999, 9, 601 https://doi.org/10.1007/PL00010952
  4. Chen, W.; Wang, Z.; Lin, Z.; Lin, L.; Fang, K.; Xu, Y.; Su, M.; Lin, J. J. Appl. Phys. 1998, 83, 3811-3815 and references therein https://doi.org/10.1063/1.366611
  5. Srdanov, V. I.; Blake, N. P.; Markgraber, D.; Metiu, H.; Stucky, G. D. Advanced Zeolite Science and Applications, Studies in Surface Science and Catalysis; Jansen, J. C., Stocker, M., Karge, H. G., Weitkamp, J., Eds.; Elsevier Science: Amsterdam, 1994; Vol. 85, pp 115-144
  6. Tani, T.; Murofushi, M. J. Imaging Sci. Technol. 1994, 38, 1
  7. Takahashi, K.; Miyahara, J.; Shibahara, Y. J. Electrochem. Soc. 1985, 132(6), 1492 https://doi.org/10.1149/1.2114149
  8. Kellerman, R.; Texter, J. J. Chem. Phys. 1979, 70, 1562 https://doi.org/10.1063/1.437550
  9. Hirono, T.; Yamada, T. Japanese Patent 61-061894, 1986
  10. Godber, J.; Ozin, G. A. J. Phys. Chem. 1988, 92, 4980 https://doi.org/10.1021/j100328a032
  11. Zhai, Q. Z.; Qiu, S.; Xiao, F. S.; Zhang, Z. T.; Shao, C. L.; Han, Y. Materials Research Bulletin 2000, 35, 59 https://doi.org/10.1016/S0025-5408(00)00193-8
  12. Chen, W.; McLendon, G.; Marchetti, A.; Rehm, J. M.; Freedhoff, M. I.; Myers, C. J. Am. Chem. Soc. 1994, 116, 1585 https://doi.org/10.1021/ja00083a060
  13. Robledo, A.; Garcia, N. J.; Bazan, J. C. Solid State Ionics 2001, 139, 303 https://doi.org/10.1016/S0167-2738(00)00820-1
  14. Comor, M. I.; Nedeljkovic, J. M. Chemical Physics Letters 1999, 299, 233 https://doi.org/10.1016/S0009-2614(98)01261-5
  15. Ehrlich, S. H. J. Imaging Sci. Technol. 1994, 38, 201
  16. Heo, N. H.; Kim, H. S.; Lim, W. T.; Seff, K. J. Phys. Chem. B 2004, 108, 3168 https://doi.org/10.1021/jp031137p
  17. Charnell, J. F. J. Crystal Growth 1971, 8, 291 https://doi.org/10.1016/0022-0248(71)90074-1
  18. Kim, Y.; Seff, K. J. Phys. Chem. 1978, 82, 1071 https://doi.org/10.1021/j100498a021
  19. Kim, Y.; Seff, K. J. Am. Chem. Soc. 1978, 100, 6989 https://doi.org/10.1021/ja00490a035
  20. Cruz, W. V.; Leung, P. C. W.; Seff, K. J. Am. Chem. Soc. 1978, 100, 6997 https://doi.org/10.1021/ja00490a036
  21. Mellum, M. D.; Seff, K. J. Phys. Chem. 1984, 88, 3560 https://doi.org/10.1021/j150660a036
  22. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 61-66
  23. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen, Germany, 1997
  24. Leung, P. C. W.; Kunz, K. B.; Seff, K.; Maxwell, I. E. J. Phys. Chem. 1975, 79, 2157 https://doi.org/10.1021/j100587a020
  25. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390 https://doi.org/10.1107/S0567739468000756
  26. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98
  27. Cromer, D. T. Acta Crystallogr. 1965, 18, 17 https://doi.org/10.1107/S0365110X6500004X
  28. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150
  29. Emsley, J. The Elements; Oxford University Press: 1990; p 176
  30. Tables of Interatomic Distances and Configuration in Molecules and Ions; The Chemical Society: London, 1958
  31. Comprehensive Inorganic Chemistry; Bailar Jr., J. C., Emeleus, H. J., Nyholm, Sir R., Trotman-Dickenson, A. F., Eds.; Pergamon Press: 1976; Vol. 3, p 95
  32. Zhang, H.; Schelly, Z. A.; Marynick, D. S. J. Phys. Chem. A 2000, 104, 6287 https://doi.org/10.1021/jp000099w
  33. Jansen, M. Angew. Chem. Int. Ed. Engl. 1987, 26, 1098 https://doi.org/10.1002/anie.198710981
  34. Choi, E. Y.; Kim, S. Y.; Kim, Y.; Seff, K. Microporous Mesoporous Mater. 2003, 62, 201 https://doi.org/10.1016/S1387-1811(03)00406-2
  35. Rabilloud, F.; Spiegelmann, F.; Heully, J. L. J. Chem. Phys. 1999, 111, 8925 https://doi.org/10.1063/1.480237
  36. Wells, A. F. Structural Inorganic Chemistry, 5th Ed.; Clarendon Press: Oxford, 1984; pp 410-411
  37. Handbook of Chemistry and Physics, 80th Ed.; CRC Press: Boca Raton, 1999/2000; p 4-147
  38. Johansson, K. P.; Marchetti, A. P.; McLendon, G. L. J. Phys. Chem. 1992, 96, 2873 https://doi.org/10.1021/j100186a018

Cited by

  1. Nanoclusters and Reduced 1,3,5-Tripyrylium Dimers with Remarkably Short 2.43 Å Interplanar Spacings vol.112, pp.30, 2008, https://doi.org/10.1021/jp801717e
  2. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database vol.39, pp.3, 2010, https://doi.org/10.1063/1.3432459
  3. Surprising Intrazeolitic Chemistry of Silver vol.120, pp.10, 2016, https://doi.org/10.1021/acs.jpcc.5b11490
  4. Ferrocene-Based Trimethylsilyl Chalcogenide Reagents for the Assembly of Functionalized Metal-Chalcogen Architectures vol.17, pp.21, 2011, https://doi.org/10.1002/chem.201003756