A BI-Level Programming Model for Transportation Network Design

BI-Level Programming 기법을 이용한 교통 네트워크 평가방법 연구

  • 김병종 (한국항공대학교 항공교통물류학부) ;
  • 김원규 (한국항공대학교 항공교통물류학부)
  • Published : 2005.12.31


A network design model has been proposed. which represents a transportation facility investment decision problem. The model takes the discrete hi-level programming form in which two types of decision makers, government and travelers, are involved. The model is characterized by its ability to address the total social costs occurring in transportation networks and to estimate the equilibrium link volumes in multi-modal networks. Travel time and volume for each link in the multi-modal network are predicted by a joint modal split/traffic assignment model. An efficient solution algorithm has been developed and an illustrative example has been presented.


  1. 건설교통부(1999), 고속도로 민자유치 타당성 분석연구
  2. 건설교통부(1998), 교통통계연보
  3. 국토연구원(1999), 도로사업투자분석 편람
  4. 김재영 . 임강원(2000), '유전자 알고리즘을 이용한 변동부등식 제약하의 연속형 가로망 설계', 대한교통학회지, 제18권 제1호, 대한교통학회, pp.61-73
  5. 동부엔지니어링(1997), Inland Water-ways in Korea: Pre-feasibility Study
  6. 서선덕(1994), 지역간 철도 운행비용 모형의 정립
  7. 오세창(1995), '교통망 설계 문제의 해결을 위한 교통망 집성화 절차', 대한교통학회지, 제13권 제3호, 대한교통학회, pp.87-98
  8. 이상건 . 임영태 . 김병종 . 김원규(2000), 국가수송 분담구조의 적정성 평가모형에 관한 연구, 국토연구원 보고서 2000-26
  9. 임용택(2004), '민감도 분석을 이용한 연속형 교통망설계모형의 개발', 대한교통학회지, 제22권 제2호, 대한교통학회, pp.65-76
  10. 임용택 . 임강원(2004), 'Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구'. 대한교통학회지, 제22권 제7호, 대한교통학회, pp.99-106
  11. 한국개발연구원(2000), 도로부문사업의 예비타당성 조사 표준지침(개정판)
  12. Anandalingam, G. and Friesz, T.L.(1992), 'Hierarchical Optimization: An Introduction', Annals of Operations Research. Vol. 34: Hierarchical Optimization. Edited by Anandalingam G. and Friesz, T.L., J.C. Baltzer AG. pp.1-11 https://doi.org/10.1007/BF02098169
  13. Asakura, Y. and Sasaki. T.(990), 'Formulation and Feasibility Test of Optimal Road Network Design Model with endogenously Determined Travel Demand'. Proceedings of the 5th World Conference on Transport Research. Yokohama, Japan, pp.351-365
  14. Boyce, D.E. and Jason, B.N.(1980); 'A Discrete Transportation Network Design Problem with Combined Trip Distribution and Assignment', Transportation Research Part B. Vol. 14. pp.147-154 https://doi.org/10.1016/0191-2615(80)90040-5
  15. Chen, M. and Alfa, A.S.(1991), 'A Network Design Algorithm Using a Stochastic Incremental Traffic Assignment Approach', Transportation Science, Vol.25. pp.215-224 https://doi.org/10.1287/trsc.25.3.215
  16. Cho, H. and Lo, S.(1999), 'Solving Bilevel Network Design Problem Using a Linear Reaction Function without Nondegeneracy Assumption', Transportation Research Records 1667. Paper No. 99-1486. pp.96-106
  17. Davis. G.A.(1994). 'Exact Local Solution of the Continuous Network Design Problem via Stochastic User Equilibrium Assignment', Transportation Research Part B, Vol. 28, pp,61-75 https://doi.org/10.1016/0191-2615(94)90031-0
  18. Friesz, T.L., Cho, H.J., Mehta, N.J., Nam, K., Shah, S.J. and Tobin, R.L.(1992), 'A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints', Transportation Science, Vol. 26, No. 1, pp.12-26
  19. Kim, T.J.(1990), Advanced Transport and Spatial Systems Models: Applications to Korea, Springer-Verlag
  20. Kocur, G. and Hendrickson, C.(1982), 'Design of Local Bus Service with Demand Equilibration', Transportation Science, Vol. 16, pp.149-170 https://doi.org/10.1287/trsc.16.2.149
  21. LeBlanc, L.J. and Boyce, D.E.(1986), 'A Bilevel Programming Algorithm for Exact Solution of the Network Design Problem with User-Optimal Flows', Transportation Research Part B, Vol. 20, No. 3, pp.259-265 https://doi.org/10.1016/0191-2615(86)90021-4
  22. Lo, H.K., Yip, C. and Wan, Q.K.(2004), 'Modeling Competitive Multi-modal Transit Services: a Nested LOGIT Approach', Transportation Research Part C, Vol. 12, pp.251-272 https://doi.org/10.1016/j.trc.2004.07.011
  23. Poorzahedy, H. and Turnquist, M.A.(1982), 'Approximate Algorithm for the Discrete Network Design Problem', Transportation Research Part B, Vol. 16, No.1. pp.45-55 https://doi.org/10.1016/0191-2615(82)90040-6
  24. Sheffi, Y.(1985), Urban Transportation Networks, Prentice Hall
  25. Solanki, R.S., Gorti, J.K. and Southworth, F. (1998), 'Using Decomposition in a Large-scale Highway Network Design with a Quasi-optimization Heuristics', Transportation Research Part B, Vol. 32, No.2, pp.127-140 https://doi.org/10.1016/S0191-2615(97)00020-9
  26. Suh, S. and Kim, T.J.(1992), 'Solving Nonlinear Bilevel Programming Models of the Equilibrium Network Design Problem: A Comparative Review', Annals of Operations Research. Vol. 34: Hierarchical Optimization, Edited by Anandalingam, G. and Friesz, T.L., J.C. Baltzer AG,pp. 203-218 https://doi.org/10.1007/BF02098180
  27. William, H.C.W.L. and Lam, W.M.(1991), 'Transport Policy Appraisal with Equilibrium Models 1: Generalized Traffic and Highway Investment Benefits', Transportation Research Part B, Vol.25, pp.253-279 https://doi.org/10.1016/0191-2615(91)90022-B
  28. Wong, S.C. and Yang, H.(1997), 'Reserve Capacity for a Signal Controlled Road Network', Transportation Research Part B, Vol.31, pp.397-402 https://doi.org/10.1016/S0191-2615(97)00002-7
  29. Yang, H. and Bell, M.G.H.(1997), 'Traffic Restraint, Road Pricing and Network Equilibrium', Transportation Research. Part B, Vol.31, pp.303-314 https://doi.org/10.1016/S0191-2615(96)00030-6
  30. Yang, H. and Bell, M.G.H.(1998), 'Models and Algorithms for Road Network Design: a Review and Some New Developments', Transport Reviews, Vol.13, No.3, pp.257-278