DOI QR코드

DOI QR Code

Transdermal Delivery of FITC-Ovalbumin with Microneedle System

마이크로 피부침을 이용한 FITC-OVA의 경피흡수

  • Jang, Woo-Young (Department of Polymer Nano Science and Technology, Chonbuk National University) ;
  • Lee, Chang-Rae (Department of Polymer Nano Science and Technology, Chonbuk National University) ;
  • Seo, Seong-Mi (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Bong (Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Moon-Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Khang, Gil-Son (Department of Polymer Nono Science and Technology, Chonbuk National University, Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee, Han-Gu (DS&G Co. Ltd.) ;
  • Lee, Hai-Bang (Department of Polymer Nono Science and Technology, Chonbuk National University, Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • 장우영 (전북대학교 고분자 나노공학과) ;
  • 이창래 (전북대학교 고분자 나노공학과) ;
  • 서성미 (부경대학교 고분자공학과) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 김문석 (한국화학연구원 생체의료고분자팀) ;
  • 강길선 (전북대학교 고분자 나노공학과, 한국화학연구원 생체의료고분자팀) ;
  • 이한구 (디에스엔지) ;
  • 이해방 (전북대학교 고분자 나노공학과, 한국화학연구원 생체의료고분자팀)
  • Published : 2005.12.20

Abstract

For transdermal delivery of large molecular drugs such as vaccine and protein drugs, novel microneedle treatment device with roll was designed. The roll dimension is 1.43 cm diameter and 2.8 cm perimeter. Total number of microneedle on the roll is 3,360 with $230\;{\mu}m$ height and $740\;{\mu}m$ distance. The pore with $150\;{\mu}m$ depth and $35\;{\mu}m$ diameter on the skin was made by the designed microneedle device. This system could be achieved without pain. The permeation rates of FITC labelled ovalbumin (FITC-OVA, molecular weight: 45,000 g/mol) as a model protein were determined by modified Franz diffusion cells using skins of hairless mice or SD rats which were treated by using microneedle device two or four times. The average penetration fluxes of model protein increased from 674 to $872\;{\mu}g/cm^{2}{\cdot}hr$ as the number of treatment to make pore increased from two to four times. In conclusion, we confirmed the possibility of using the designed microneedle treatment device for transdermal delivery of the large molecular drugs.

References

  1. G. Khang, J.M. Rhee, J.K. Jeong, J.S. Lee, M.S. Kim, S.H. Cho and H.B. Lee, Development of local drug delivery system using biodegradable polymers, Macromol. Res., 11, 207-223 (2003) https://doi.org/10.1007/BF03218355
  2. H.B. Lee and G. Khang, Chap. 1, Perspective for drug delivery system, In High Efficiency Anticancer Drug using Polymeric Biomaterial, Edited by H.B. Lee, Munundang Publishing Co., Seoul, 2004, pp 1-18
  3. G. Khang, J.M. Rhee and H.B. Lee, Chap. 8, Drug delivery system using osmotic pump, In High Efficiency Anticancer Drug using Polymeric Biomaterials, Edited by H.B. Lee, Munundang Publishing Co., Seoul, 2004, pp 135-54
  4. G. Khang, J.K. Jeong and J.S. Lee, Chap. 12, Improvement of bioavailability for poorly water soluble drug using polymeric nanovehicles, In High Efficiency Anticancer Drug using Polymeric Biomaterials, Edit, ed by H.B. Lee, Munundang Publishing Co., Seoul, 2004, pp 171-85
  5. G. Khang, J.K. Jeong, J.K. Lee, J.M. Lee and H.B. Lee, Recent develpoment trends of the improving bioavailability by polymeric nanovehicles of poorly water-soluble drugs, Polymer Sci. Tech., 13, 342-359 (2002)
  6. K.D. Hong, Y.S. Ahn, W.Y. Jang, M.S. Kim, S.H. Cho, G. Khang, H.G. Lee and H.B. Lee, Importance of polymeric biomaterials for transdermal delivery, Polymer Sci. Tech., 15, 132-140 (2004)
  7. R.L. Bronaugh and H.I. Maibach, Percutaneous Absorption: Drugs-Cosmetics-Mechanisms-Methodology, Marcel Dekker, New York (1999)
  8. E. Touitou, Drug delivery across the skin, Expert Opin. BioI. Ther., 2, 723-733 (2002) https://doi.org/10.1517/14712598.2.7.723
  9. B. Barry and A. Williams, Penetration enhancers, Adv. Drug Deliv. Rev., 56, 603-618 (2003) https://doi.org/10.1016/j.addr.2003.10.025
  10. G. Cevc, Lipid vesicles and other colloids as drug carriers on the skin, Adv. Drug Deliv. Rev., 56, 675-711 (2004) https://doi.org/10.1016/j.addr.2003.10.028
  11. Y Kalia and R. Guy, Modeling transdermal drug release, Adv. Drug Deliv. Rev., 48, 159-172 (2001) https://doi.org/10.1016/S0169-409X(01)00113-2
  12. V. Preat and R. Vanbever, Skin electroporation for transdermal and topical delivery, Adv. Drug Deliv. Rev., 56, 659-674 (2004) https://doi.org/10.1016/j.addr.2003.10.027
  13. A. Doukas, Transdermal delivery with a pressure wave, Adv. Drug Deliv. Rev., 56, 559 (2004) https://doi.org/10.1016/j.addr.2003.10.031
  14. S. Mitragotri and J. Kost, Low-frequency sonophoresis: a review, Adv. Drug Deliv. Rev., 56, 589-601 (2004) https://doi.org/10.1016/j.addr.2003.10.024
  15. R.H. Champion, J.L. Burton, D.A. Burns and S.M. Breathnach, Textbook of Dermatology, Blackwell Science, London (1998)
  16. M.S. Gerstel and V.A. Place, Drug delivery device, US Patent No. 3,964,482 (1976)
  17. Korea Patent 1993-0000062, Korea Patent 1993-0003115, Korea Patent 1995-0000061, Korea Patent 1996-0004299
  18. B.C. Shin, S.Y. Oh, H.B. Lee, Y.D. Park and K.H. Lee, J. Kor. Pharm. Sci., 26, 315 (1996)
  19. S. Henry, D. McAllister, M.G. Allen and M.R. Prausnitz, Microfabricated microneedles: a novel method to increase transdermal drug delivery, J. Pharm. Sci., 87, 922-925 (1998) https://doi.org/10.1021/js980042+
  20. M.R. Praunsnitz, Microneedles for transdermal drug delivery, Adv. Drug Deliv. Rev., 56, 581-587 (2004) https://doi.org/10.1016/j.addr.2003.10.023
  21. E.D. Jenner, Inquiry (1798) and The Complete Letters of Lady Mary Wortley Montagu, ed. R. Halsband, Oxford, Clareudon Press, 1965-7, Vol. 1, pp 338-9
  22. S. Hashmi, P. Ling, G. Hashmi, M. Reed, R. Gaugler and W. Trimmer, Genetic transformation of nematodes using arrays of micromechanical piercing structures, BioTechniques, 19, 766-770 (1995)
  23. D.V. McAllister, P.M. Wang, S.P. Davis, J.-H Park, M.G. Allen and M.R. Prausnitz, Microfabricated needles for transdermal delivery Micromolecules and nanoparticles: fabrication methods and transport studies, Proc. Natl. Acad. Sci., 100, 13755-137560 (2003)
  24. W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. Teng, G.E. Hardee and P. Daddona, Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology, Pharm. Res., 18, 1789-1973 (2001) https://doi.org/10.1023/A:1013395102049
  25. M. Cormier and P.E. Daddona, Macroflux technology for transdermal delivery of therapeutic proteins and vaccines. In: Modified-Release Drug Delivery Technology, M.J. Rathbone, J. Hadgraft and M.S. Roberts, Eds Marcel Dekker, New York, 589-598 (2003)
  26. W. Martanto, S. Davis, N. Holiday, J. Wang, H. Gill and M. Prausnitz, Transdermal delivery of insulin using microneedles in vivo, Proceed. Inter. Symp. Controll. Release Bioactive Mater., 66, 6 (2003)
  27. J.A. Matriano, M. Cormier, J. Johnson, W.A. Young, M. Buttery, K. Nyam and P.E. Daddona, Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization, Pharm. Res., 19, 63-70 (2002) https://doi.org/10.1023/A:1013607400040
  28. J.A. Mikszta, J.B. Alarcon, J.M. Brittingham, D.E. Sutter, R.J. Pettis and N.G. Harvey, Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery, Nat. Med. 8, 415-419 (2002) https://doi.org/10.1038/nm0402-415
  29. B. Stoeber, and D. Liepmann, Fluid injection through out-of-plane microneedles, Proceed. Inter. IEEE-EMBS Special Topic Conference on Microtech. in Medicine and Biology, 34 (2000)
  30. J. Chen and K.D. Wise, A multichannel neural probe for selective chemical delivery at the cellular Ievel, IEEE Trans. Biomed. Eng., 44, 760-769 (1997) https://doi.org/10.1109/10.605435
  31. W.H. Smart and K. Subramanian, The use of silicon microfabrication technology in painless blood glucose monitoring, Diabetes Technol. Ther., 2, 549-559 (2000) https://doi.org/10.1089/15209150050501961
  32. S.P. Davis, B.J. Landis, Z.H. Adams, M.G Allen and M.R. Prausnitz, Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force, J. Biomech., 37, 1155-1163 (2004) https://doi.org/10.1016/j.jbiomech.2003.12.010
  33. S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G Allen and M.R. Prausnitz, Lack of pain associated with microfabricated microneedles, Anesth. Analg., 92, 502-504 (2001) https://doi.org/10.1213/00000539-200102000-00041
  34. J.-H. Park, M.G. Allen and M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery, J. Controll. release, 104, 51-66 (2005) https://doi.org/10.1016/j.jconrel.2005.02.002
  35. P.H. Demana, N.M. Davies, B. Berger and T. Rades, Incorporation of ovalbumin into ISCOMs and related colloidal particles prepared by the lipid film hydration method, Int. J. Pharm., 278, 263-274 (2004) https://doi.org/10.1016/j.ijpharm.2004.03.021
  36. A.H. James and E.S. Penelope, Structure and properties of ovalbumin, J. Chromatogr. B: Biomed. Sci. Appl., 756, 189-198 (2001) https://doi.org/10.1016/S0378-4347(01)00108-6