Antioxidative and Protective Effects of Ulmus davidiana var. japonica Extracts on Glutamate-Induced Cytotoxicity in PC 12 Cells

느릅나무 추출물의 항산화 효과 및 L-glutamate 유래 PC12 세포독성 보호효과

  • Published : 2005.06.30


Antioxidative and protective effects of Ulmus davidiana var. japonica against oxidative damages induced by glutamate in PC 12 cells were investigated. Inhibitory activity against $FeSO_{4}-H_{2}O_{2}$-induced oxidative stress and DPPH radical-scavenging activity were detected in ethyl acetate and butanol fractions of ethanol extracts from stems and roots. Ethyl acetate and butanol fractions of ethanol extracts from roots significantly inhibited glutamate-induced cytotoxicity and reactive oxygen species in PC 12 cells. These results demonstrate ethyl acetate and butanol fractions of ethanol extracts of U. davidiana var. japonica have potent protective effect against glutamate-induced oxidative stress.


Ulmus davidiana var. japonica;glutamate;ROS;oxidative stress


  1. Totter JR. Spontaneous cancer and its possible relationship to oxi-gen metabolism. Proc. Natl. Acad. Sci. USA 77: 1763-1767 (1980)
  2. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 6: 3338-3344 (1992)
  3. Shin MK, Clinical traditional herbalogy. Younglimsa, Seoul, Korea pp. 669-778(1997)
  4. Hong ND, Rho YS, Kim NJ, Kim JS. A study on efficacy of ulmi cortex. Korean. J. Pharmacogn. 21: 217-222 (1990)
  5. Jun CD, Pae HO, Kim YC, Jeong SJ, Yoo JC, Lee EJ, Choi BM, Chae SW, Park RK, Chung HT. Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharm. 62:129-135 (1998)
  6. Kwon YM, Lee JH, Lee MW. Phenolic compounds from barks of Ulmus macrocarpa and its antioxidantive activites. Korean. J. Pharmacogn. 33: 404-410 (2002)
  7. Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem. Pharmacol. 57:199-208 (1999)
  8. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11:465-469
  9. King N, McGivan JD, Griffiths EJ, Halestrap AP, Suleiman MS. Glutamate loading protects freshly isolated and perfused adult cardiomyocytes against intracellular ROS generation. J. Mol. Cell. Cardio. 35: 975-984 (2003)
  10. Lee YJ, Han JP. Antioxidative activities and nitrite scavenging abilities of extracts from Ulmus davidiana. J. Korean Soc. Food Sci. Nutr. 29: 893-899 (2000)
  11. Huang X, Dai J, Fournier J, Ali AM, Zhang Q, Frenkel K. Ferrous ion autoxidation and its chelation in iron-loaded human liver $HepG_2$ cells. Free Rad. Biol. Med. 32: 84-92 (2002)
  12. Bondy SC, Lee DK. Oxidative stress induced by glutamate receptor agonist. Brain Res. 610: 229-233 (1993)
  13. Ames BN, Shigenaga MK, Hagen TM. Oxidant, antioxidants, and the degenerative disease of aging. Proc. Natl. Acad. Sci. USA. 90:7915-7922(1993)
  14. Bae YS, Kim JK. Extractives of the bark of ash and elm as medical hardwood tree species. Mokjae Konhak. 28: 62-69 (2000)
  15. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 26:1199-1200(1958)
  16. Lee EB, Kim OK, Jung CS, Jung KH. The influence of methanol extract of Ulmus davidiana var japonica cortex on gastric erosion and ulcer and paw edema in rats. Korean. J. Pharmacol. 39: 671-675(1995)
  17. Yobimoto K, Matsumoto K, Huong N, Kasai R, Yamasaki K, Watanabe H. Suppressive effects of Vietnamese ginseng saponin and major component majonoside-R2 on psychological stress-induced enhancement of lipid peroxidation in the mouse. Phamacol. Biochem. Behavior 66: 661-665 (2000)
  18. Ohkawa H. Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  19. Yang Y, Hyun JW, Lim KH, Kim HJ, Woo ER, Park J. Antineoplastic effect of extracts from traditional medical plants and various plants (III). Korean. J. Pharmacogn. 27: 105-110 (1996)
  20. Naito M, Umegaki H, Iguchi A. Protective effects of probucol against glutamate-induced cytotoxicity in neuronal cell line PC 12.Neurosci. Lett. 186: 211-213 (1995)
  21. Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221: 1256-1264 (1983)
  22. Murphy TH, Malouf AT, Sastre A, Schnaar RL, Coyle JT. Calcium-dependent glutamate toxicity in a neuronal cell line. Brain Res. 444: 326-332 (1988)
  23. Wink DA, Nims RW, Saavedra JE, Utermahlen WE, Ford Jr. PC. The fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical. Proc. Natl. Acad. Sci. USA. 91:6604-6608(1994)
  24. Lee MK, Sung SH, Lee HS, Cho JH, Kim YC. Lignan and neo-lignan glycosides from Ulmus davidiana var. japonica. Arch. Pharm. Res. 24: 198-201 (2001)
  25. Seyfreid J, Evert BO, Rundfeldt C, Schulz JB, Kovar KA, Klock-gether T, Wullner U. Flupirtine and retigabine prevent L-glutamate toxicity in rat pheochromocytoma PC 12 cells. Eur. J. Pharmacol. 400: 155-166(2000)
  26. Choi DW. Excitotoxic cell death. J. Neurobiol. 23: 1261-1276 (1992)
  27. Qian SY, Buettner GR. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping study. Free Radic. Biol. Med. 26: 1447-1456 (1999)
  28. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Rad. Biol. Med. 27: 612-616 (1999)
  29. Lesnefsky EJ. Tissue iron overload and mechanisms of iron-catalyzed oxidative injury. Adv. Exp. Med. Biol. 366: 129-146 (1994)