밀과 밀가루 중 알루미늄포스파이드 잔류량 모니터링

Monitoring of Aluminium Phosphide Residues in Wheat and Wheat Flour

  • 최용훈 (경인지방식품의약품안전청 시험분석실) ;
  • 윤상현 (경인지방식품의약품안전청 시험분석실) ;
  • 홍혜미 (인하대학교 식품영양학과) ;
  • 강윤숙 (경인지방식품의약품안전청 시험분석실) ;
  • 채갑용 (부산지방식품의약품안전청 시험분석실) ;
  • 이종옥 (경인지방식품의약품안전청 시험분석실)
  • Choi, Yong-Hoon (Test and Analytical Laboratory, Gyeongin Regional Korea Food and Drug Administration) ;
  • Yoon, Sang-Hyeon (Test and Analytical Laboratory, Gyeongin Regional Korea Food and Drug Administration) ;
  • Hong, Hye-Mi (Department of Food and Nutrition, Inha University) ;
  • Kang, Yun-Sook (Test and Analytical Laboratory, Gyeongin Regional Korea Food and Drug Administration) ;
  • Chae, Kab-Ryong (Test and Analytical Laboratory, Busan Regional Korea Food and Drug Administration) ;
  • Lee, Jong-Ok (Test and Analytical Laboratory, Gyeongin Regional Korea Food and Drug Administration)
  • 발행 : 2005.08.31

초록

우리나라에서 사용하는 수입원맥에 잔류하는 알루미늄포스 파이드에 대해 모니터링을 실시하였으며 원맥과 함께 밀가루에 대하여도 포스파인의 잔류량을 모니터링하였다. 묽은 황산과 시료 중의 잔류 포스파인을 반응시켜 발생된 포스파인가스를 GC-NPD를 이용하여 측정하였다. 호주산 밀의 경우 전체 27건의 시료 중 95% 이상이 1 ppb 이하로 검출되었다. 그러나 미국산 밀의 경우 58건중 70% 정도가 1-10ppb 범위에서 검출되었으며, 10ppb가 넘는 시료도 4건이나 되는 등 상대적은 높은 수준의 알루미늄포스파이드 잔류량을 나타내었다. 원료에서 제품으로 포스파인이 이행되는 정도는 14-22%인 것으로 나타났으며 모의실험을 통하여 제분 중에 제거되는 포스파인의 양에는 한계가 있음을 알 수 있었다. 같은 산지의 밀이라도 다양한 농도 범위에서 불규칙한 잔류량을 보이고 있었으며 동일 물량이라 하더라도 포스파인의 잔류량은 균질하지 않음을 확인하여 알루미늄포스파이드제제를 사용하여 훈증소독을 실시할 경우, 훈증방법이나 훈증시간 이외에도 훈증 후의 개방시간, 주위환경 등이 매우 중요함을 알 수 있었다.

참고문헌

  1. Potter WT, Rong S, Griffith J, White J, Garry VF. Phosphine mediated Heinz body formation and hemoglobin oxidation in human erythrocytes. Toxicol. Lett. 57: 37-45 (1991) https://doi.org/10.1016/0378-4274(91)90117-O
  2. Garry VF, Tarone RE, Long L, Griffith J, Kelly JT, Burroughs B. Pesticide appliers with mixed pesticide exposure:G-banded analysis and possible relationship to non-Hodgkin's lymphoma. Cancer Epidemiol. Biomarkers Prev. 5: 11-16 (1996)
  3. Reed C, Pan H. Loss of phosphine from unsealed bins of wheat at six combinations of grain temperature and grain moisture content. J. Stored Prod. Res. 36: 263-279 (2000) https://doi.org/10.1016/S0022-474X(99)00049-1
  4. Williams P, Nickson PJ, Braby MF, Henderson AP. Phosphine fumigations of wheat in 2500 $m^3$ steel bins without recirculation facilities. J. Stored Prod. Res. 32: 153-162 (1996) https://doi.org/10.1016/0022-474X(96)00002-1
  5. Berek B. Sorption of phosphine by cereal products. J. Agric. Food Chem. 16: 419-425 (1968) https://doi.org/10.1021/jf60157a009
  6. Carlson M, Thomson RD. Determination of phosphine residues in whole grains and soybeans by ion chromatography via conversion to phosphate. J. Assoc. Off. Anal. Chem. 81: 1190-1201 (1998)
  7. Garry VF, Griffith J, Danzl TJ, Nelson RL, Whorton EB, Krueger LA, Cervenka J. Human genotoxicity: Pesticide applicators and phosphine. Science 246: 251-255 (1989) https://doi.org/10.1126/science.2799386
  8. Truker JD, Moore DH, Ramsey MJ, Kato P, Langlois RG, Burroughs B, Long L, Garry VF. Multi-endpoint biological monitoring of phosphine workers. Mutat. Res. 536: 7-14 (2003) https://doi.org/10.1016/S1383-5718(03)00014-7
  9. Kashi KP, Bond EJ. The toxic action of phosphine:Role of carbon dioxide on the toxicity of phosphine to Sitophilus granarius(L.) and Tribolium confusum DuVal. J. Stored Prod. Res. 11: 9-15 (1975) https://doi.org/10.1016/0022-474X(75)90056-9
  10. Gehring PJ, Nolan RJ, Watanabe PG, Shumann AM. Solvents, fumigants, and related compounds. pp.10-189. In: Handbook of Pesticide Toxicology. Hayes WJ, Laws ER (eds.). Academic Press, New York, NY, USA (1991)
  11. Garry VF, Danzi TJ, Tarone RE, Gruffith J, Cervenka J, Krueger LA, Whorton EJ, Nelson RL. Chromosome rearrangements in fumigant appliers:possible relationship to non-Hodgkin's lymphoma risk. Cancer Epidemiol. Biomarkers Prev. 1: 287-291 (1992)