Evaluation of the Estrogenic and Antioxidant Activity of Some Edible and Medicinal Plants

식용 및 약용자원의 에스트로젠 활성과 항산화능 평가

  • Choi, Sun-Young (Department of Food and Nutrition, Seoul National University) ;
  • Lim, Sun-Hye (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Ji-Sun (Food Function Research Division, Korea Food Research Institute) ;
  • Ha, Tae-Youl (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Sung-Ran (Food Function Research Division, Korea Food Research Institute) ;
  • Kang, Kyung-Sun (Department of Veterinary Public Health, Seoul National University) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition, Seoul National University)
  • 최선영 (서울대학교 식품영양학과) ;
  • 임선혜 (한국식품연구원 식품기능연구본부) ;
  • 김지선 (한국식품연구원 식품기능연구본부) ;
  • 하태열 (한국식품연구원 식품기능연구본부) ;
  • 김성란 (한국식품연구원 식품기능연구본부) ;
  • 강경선 (서울대학교 수의학과) ;
  • 황인경 (서울대학교 식품영양학과)
  • Published : 2005.08.31

Abstract

Estrogenic and antioxidant activities of ethanol extracts of 45 edible and medicinal plants were evaluated by ${\beta}-galactosidase$ assay, and DPPH radical scavenging assay, and TBARS inhibition rate, respectively. Total polyphenol contents were in the range of 8.6 (Panax notoginseng Buck F.H. Chen.)-594.7 (Amomum globosum Loureiro) mg/g. Direct correlation between the DPPH radical scavenging activity and polyphenol content $(r^2=0.61)$ was established through simple regression analysis, whereas no correlation was observed between TBARS inhibition rate or ${\beta}-galactosidase$ activity and polyphenol content. Among medicinal plants screened, Glycyrrhiza glabra L. and Rheum undulatum L. showed strong antioxidant and estrogenic activities. Results of this study could be used as fundamental data for selecting potential phytoestrogen candidates.

Keywords

antioxidant activity;estrogenic activity;edible and medicinal plant;${\beta}-galactosidase$ assay

References

  1. Kwon SC. Effects of continuously added oral progestin (medroxyprogesterone acetate) on the levels of serum lipid and lipoprotein during estrogen replacement therapy in postmenopausal women. Korean Soc. Obsterics Gynecol. 41: 2442-2446 (1998)
  2. Schafer JM, Lee ES, O'Regan RM, Yao K, Jordan VC. Clin. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Cancer Res. 6: 4373-4380 (2000)
  3. Mazur W, Adlercreutz H. Overview of naturally occuring endocrine-active substances in the human diet in relation to human health. Nutrition 16: 654-687 (2000) https://doi.org/10.1016/S0899-9007(00)00333-6
  4. Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J. Bone Miner. Metab. 21: 268-275 (2003) https://doi.org/10.1007/s00774-003-0420-z
  5. Wang JF, Guo YX, Niu JZ, Liu J, Wang LQ, Li PH. Effects of Radix Puerariae flavones on liver lipid metabolism in ovariectomized rats. World J. Gastroenterol. 10: 1967-1970 (2004) https://doi.org/10.3748/wjg.v10.i13.1967
  6. Choi YS, Cho SH. Effects of defatted safflower seed powder on intestinal physiology and fecal short-chain fatty acids in ovariectomized female rats fed high cholesterol diets. J. Korean Soc. Food Sci. Nutr. 30: 528-534 (2001)
  7. Kim SJ, Park C, Kim HG, Shin WC, Choe SY, A study on the estrogenicity of Korean arrowroot (Pueraria thunbergiana). J. Korean Soc. Food Sci. Nutr. 33: 16-21 (2004) https://doi.org/10.3746/jkfn.2004.33.1.016
  8. Arcaro KF, Vakharia DD, Yang Y, Gierthy JF. Lack of synergy by mixtures of weakly estrogenic hydroxylated polychlorinated biphenyls and pesticides. Environ. Health Perspect. 106: 1041-1046(1998) https://doi.org/10.2307/3434149
  9. Ohkawa H, Ohishi N, Yaki K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  10. Bors W, Saran M. Radical scavenging by flavonoid antioxidants. Free Radic. Res. Comm. 2: 289-294 (1987) https://doi.org/10.3109/10715768709065294
  11. Collins-Burow BM, Burow ME, Duong BN, McLachlan JA. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr. Cancer 38: 229-244 (2000) https://doi.org/10.1207/S15327914NC382_13
  12. Kim SY, Kim JH, Kim SK, Oh MJ, Jung MY. Antioxidant activities of selected oriental herb extracts. J. Am. Oil. Chem. Soc. 71: 633-640 (1994) https://doi.org/10.1007/BF02540592
  13. Hollman PCH, v.d. Gaag M, Mengelers MJB, van Trijp JMP, de Vries JHM, Katan MB. Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic. Biol. Med. 21: 703-707 (1996) https://doi.org/10.1016/0891-5849(96)00129-3
  14. Tamir S, Eizenberg M, Somjen D, Stern N, Shelach R, Kaye A, Vaya J. Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res. 60: 5704-5709 (2000)
  15. Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Protier CJ, McDonnell DP. Evaluation of chemicals with endocrine modulating activity in a yeast based steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 143: 205-212 (1997) https://doi.org/10.1006/taap.1996.8069
  16. Kronenberg F, Fugh-Berman A. Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann. Int. Med. 137: 805-813 (2002) https://doi.org/10.7326/0003-4819-137-10-200211190-00009
  17. Breinholt V, Larsen JC. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF -7 cell proliferation assay. Chem. Res. Toxicol. 11: 622-629 (1998) https://doi.org/10.1021/tx970170y
  18. Fitzpatrick DF, Hirschfiel SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am. J. Physiol. 265: H774-H778 (1993)
  19. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1201 (1958) https://doi.org/10.1038/1811199a0
  20. Singleton VL, Rossi JA, Colorimetry of total phenolics with phosphomolybdenic-phosphotungstic acid. Am. J. Enol. Vitic. 16: 144-158 (1965)
  21. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 44: 37-41 (1996) https://doi.org/10.1021/jf950190a
  22. Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HS. Potential value of plant as sources of new antifertility agents II. J. Pharmcol. Sci. 64: 717-754 (1975) https://doi.org/10.1002/jps.2600640504
  23. Mazur W, Duke JA, Wahala K, Rasku S, Adlercreutz H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. J. Nutr. Biochem. 6: 193-200 (1998)
  24. Tham DM, Gardner CD, Haskell WL. Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metabol. 83: 2223-2235 (1998) https://doi.org/10.1210/jc.83.7.2223
  25. Ettinger B. Overview of estrogen replacement therapy: a historical perspective. Proc. Soc. Exp. BioI. Med. 217: 2-5 (1998)
  26. Miksicek RJ. Commonly occuring flavonoids have estrogenic activity. Mol. Pharmcol. 44: 37-43 (1993)
  27. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ. Health Perspect. 103: 113-122 (1995) https://doi.org/10.1289/ehp.95103s7113
  28. Park JS, Lee BJ, Kang KS, Tai JH, Cho JJ, Cho MH, Inoue T, Lee YS. Hormonal effects of several chemicals in recombinant yeast, MCF-7 cells and uterotrophic assays in mice. J. Microbiol. Biotechnol. 10: 293-299 (2000)
  29. van der Sluis AA, Dekker M, Vererk R, Jongen WMF. An improved, rapid in vitro method to measure antioxidant activity. Application on selected flavonoids and apple juice. J. Agric. Food Chem. 48: 4116-4122 (2000) https://doi.org/10.1021/jf000156i
  30. Fujimoto N, Kohta R, Kitamura S, Honda H. Estrogenic activity of an antioxidant, nordihydroguaiaretic acid (NDGA). Life Sci. 74: 1417-1425 (2004) https://doi.org/10.1016/j.lfs.2003.08.012
  31. Cho SH, Lee HR, Kim TH, Choi SW, Lee WJ, Choi Y. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. J. Nutr. Sci. Vitaminol. 50: 32-37 (2004) https://doi.org/10.3177/jnsv.50.32
  32. Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T, Ogawa S, Inoue S, Muramatsu M, Masamune Y. Interaction of phytoestrogens with estrogen receptors ${\alpha}\;and\;{\beta}$. Biol, Pharmcol. Bull. 24: 351-356 (2001) https://doi.org/10.1248/bpb.24.351
  33. Franke AA, Custer LJ, Cerna CM, Narala KK. Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42: 1905-1913 (1994) https://doi.org/10.1021/jf00045a015
  34. Jeon SM, Han J, Lee HJ, Lee IK, Moon KD, Choi MS. The effects of Korean safflower (Carthamus tinctorious L.) seed powder supplementation diet on bone metabolism indices in rats during the recovery of rib fracture. Korean Nutr. Soc. 31: 1049-1056 (1998)
  35. NFRI. Mannuals of Quality Characteristic Analysis for Food Quality Evaluation (2). National Food Research Institute, Tsukuba, Japan. p. 61(1990)
  36. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  37. Marston A, Hostettmann K. Biological and chemical evaluation of plant extracts and subsequent isolation strategy. pp. 67-80. In: Bioassay Methods in Natural Product Research and Drug Development. Bohlin L, Bruhn JG (eds). Kluwer Academic Publishers, Dordrecht, the Netherlands (1999)
  38. Gaido KW, Leonard LS, Maness SC, Hall JM, McDonnell DP, Saville B, Safe S. Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxy phenyl) -1,1,1-trichloroethane with estrogen receptors alpha and beta. Endocrinology 140: 5746-5753 (1999) https://doi.org/10.1210/en.140.12.5746
  39. Walle T. Absorption and metabolism of flavonoids. Free Radic. BioI. Med. 36: 829-837 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.01.002