Effects of Fermented Milk Intake on Hepatic Antioxidative Systems in Alcohol treated Rats

알코올 투여한 쥐에서 발효유의 섭취가 간조직 내 항산화 체계에 미치는 영향

  • Published : 2005.08.31

Abstract

Effects of fermented milk, $Kupffer's^{\circledR}$, intake on hepatic antioxidative systems were investigated in rats fed ethanol (3 g/kg B.W.) for 2 weeks. Serum AST and ALT were $88.7{\pm}6.5\;and\;41.2{\pm}4.1IU/L$ in control group, $114.6{\pm}7.1\;and\;64.7{\pm}3.8IU/L$ in alcohol group, and $94.0{\pm}5.5\;and\;44.7{\pm}5.3IU/L$ in fermented milk (FM) group, respectively. Fermented milk intake decreased hepatic glutathione peroxidase and superoxide dismutase activities of FM group to level of control group (p<0.05). Glutathione S-transferase activity of fermented milk group increased by 122% compared to control group. These results suggest antioxidative activities of lactic acid bacteria and ingredients in $Kupffer's^{\circledR}$ improve antioxidative system in alcohol-treated rats.

Keywords

alcohol;antioxidative enzymes;fermented milk;$Kupffer's^{\circledR}$;liver

References

  1. Trackshel GM, Maines MD. Characterization of glutathione Stransferase in rat kidney. Biochem. J. 252: 127-136 (1988) https://doi.org/10.1042/bj2520127
  2. Gilven A, Gilven A, Gillmez M. The effect of Kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachloride-induced mice tissues. J. Vet. Med. 50: 412-416 (2003) https://doi.org/10.1046/j.1439-0450.2003.00693.x
  3. Nosova T, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M. Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohol. 35: 561-568 (2000) https://doi.org/10.1093/alcalc/35.6.561
  4. Baek MW, Park JH, Seok SH, Lee HY, Kim DJ, Huh CS, Park JH. The protective effect of V-mix against hepatotoxicants in vivo (P52). In: the 21th Annual Meeting of the Japanese Society of Toxicologic Pathology. Feb 19-21, Act City Center, Hamamatu, Japan. The Japanese Society of Toxicologic Pathology, Hamamatu, Japan (2005)
  5. David RM, Nerland DE. Induction of mouse liver glutathione Stransferase by ethanol. Biochem. Pharmacol. 32: 2809-2811 (1983) https://doi.org/10.1016/0006-2952(83)90096-5
  6. Choi OH, Yoon HJ, Kim JH. Effects of chronic alcohol feeding and 2-acetylaminotluorene treatment on microsomal cytochrome PA50 and glutathione dependent enzymes activities in rat liver. J. Korean Soc. Food Nutr. 24: 859-866(1995)
  7. Karkkainen P, Mussalo-Rauhamaa H, Poikolainen K, Lehto J. Alcohol intake correlated with serum trace elements. Alcohol Alcohol. 23: 279-282 (1988)
  8. Thruman RG, Bradford B, Iimuro Y, Knecht K, Connor H, Adachi Y, Wall C, Arteel G, Releigh J, Forman D, Mason RP. Role of kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: Studies in female and male rats. J. Nutr. 127: 903-906 (1997) https://doi.org/10.1093/jn/127.5.903S
  9. Cho SY, Jang JY, Kim MJ. Effects of Pueraria flos and radix water-extracts on levels of several serum biomarkers in ethanoltreated rats. J. Korean Soc. Food Sci. Nutr. 30: 92-96 (2001)
  10. Lawerence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 71: 952-958 (1976) https://doi.org/10.1016/0006-291X(76)90747-6
  11. Nishino T, Shibahars-Sonc H, Kikuchi-Hayakawa H, Ishikawa F. Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus easel strain Shirota fermentation through the hamster intestine. J. Dairy Sci. 83: 915-922 (2000) https://doi.org/10.3168/jds.S0022-0302(00)74954-X
  12. Okamoto G, Hayase F, Kato H. Scavenging of active oxygens species by glycated protein. Biosci. Biotech. Biochem. 56: 928-931 (1992) https://doi.org/10.1271/bbb.56.928
  13. Nordmann R, Ribiere C, Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic. Bio. Med. 12: 219-248 (1992) https://doi.org/10.1016/0891-5849(92)90030-K
  14. Yoshimura Y, lijima T, Watanabe T, Nakazawa H. Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem. 45: 4106-4109 (1997) https://doi.org/10.1021/jf9609845
  15. Seo JS. Alcohol metabolism and nutritional effects. Food Ind. Nutr. 4:13-19 (1999)
  16. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-4 (1984) https://doi.org/10.1042/bj2190001
  17. Simic MG. Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutat. Res. 202: 377-386 (1988) https://doi.org/10.1016/0027-5107(88)90199-6
  18. Lin MY, Yen CL. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 47: 3661-3664 (1999) https://doi.org/10.1021/jf981235l
  19. Terasawa N, Murta M, Homma S. Separation of model melanoidin into components with copper chelating Sepharose 6B column chromatography and comparison of chelating activity. Agric. Biol. Chem. 55: 1507-1514 (1991) https://doi.org/10.1271/bbb1961.55.1507
  20. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 90: 449-456 (2003) https://doi.org/10.1079/BJN2003896
  21. Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferase: The first enzymatic steps in mercaptyric acid formation. J. Biol. Chem. 249: 7130-7139 (1985)
  22. Flohe L, Gunzler WA, Schock HH. Glutathione-peroxidase: a selenoenzyme. FEBS Lett. 32: 132-134 (1973) https://doi.org/10.1016/0014-5793(73)80755-0
  23. Ko MS, Shin KM, Lee MY. Effects of Hijikia fusifonne ethanol extract on antioxidative enzymes in ethanol-induced hepatotoxicity ofrat liver. J. Korean Soc. Food Sci. Nutr. 31: 87-91 (2002) https://doi.org/10.3746/jkfn.2002.31.1.087
  24. Plaa GL, Witschi H. Chemicals, durgs and lipid peroxidation. Am. Rev. Toxicol. Pharmacol. 16: 125-141 (1976) https://doi.org/10.1146/annurev.pa.16.040176.001013
  25. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890 (2005)
  26. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47: 1460-1466 (1999) https://doi.org/10.1021/jf981149l
  27. Okhwa H, Ohishi N, Yaki K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  28. Kim MJ, Park EM, Lee MK, Cho SY. Effect of methionine and selenium levels on alcohol metabolic enzyme system in rats. J. Korean Soc. Food Sci. Nutr. 26: 319-326 (1997)
  29. Liu JR, Chen MJ, Lin CW. Antimutagenic and antioxidant properties of milk-kefir and soyrnilk-kefir. J. Agric. Food Chem. 53: 2467-2474 (2005) https://doi.org/10.1021/jf048934k
  30. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH. Hepatoprotective effect of lactic acid bacteria, inhibitors of ${\beta}-glucuronidase$ production against intestinal microtlora. Arch. Pharmacol. Res. 28: 325-329 (2005) https://doi.org/10.1007/BF02977800
  31. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  32. Liber CS. Hepatic, metabolic and toxic effects of ethanol. Alcohol Clin. Exp. Res. 15: 573-592 (1991) https://doi.org/10.1111/j.1530-0277.1991.tb00563.x
  33. Yoon CG, Jeon TW, Oh MJ, Lee GH, Jeong JH. Effect of the ethanol extract of Lycium chinese on the oxygen free radical and alcohol metabolizing enzyme activities in rats. J. Korean Soc. Food Sci. Nutr. 29: 268-273 (2000)
  34. Ito M, Ohishi K, Yoshida Y, Yokoi W, Sawada H. Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice. J. Agric. Food Chem. 51: 4456-4460 (2003) https://doi.org/10.1021/jf0261957
  35. Hayase F, Hirashima, S, Okamaoto G, Kato H. Scavenging of active oxygens by melanoidins. Agric. Biol. Chem. 53: 3383-3385 (1989) https://doi.org/10.1271/bbb1961.53.3383