Assessment of Sensory Attributes and Safety of Cook-Chilled Buchu-jeon

Kyung Eun Lee¹, Eun Soon Lyu² and Dong Kwan Jeong³⁷

¹Dept. of Food and Nutrition, Seoul Women’s University, Seoul 139-774, Korea
²Faculty of Food Science and Biotechnology, Pukyong National University, Busan 608-737, Korea
³Dept. of Food and Nutrition, Kosin University, Busan 606-701, Korea

Abstract

The sensory and safety of cook-chilled Buchu-jeon were evaluated to provide to foodservice operation during chilled storage for 5 days. The sensory evaluations of cook-chilled Buchu-jeon were conducted according to 3 reheating methods which was frying pan, steam/convection oven and microwave oven. The sensory evaluations were made on 4 sensory attributes (taste, odor, color, and texture) by a 9-member panel using quantitative descriptive analysis (QDA). The Buchu-jeon reheated in the steam/convection oven, after 1 day storage at 3°C, obtained higher score in taste, odor and texture than the ones reheated in a frying pan and microwave oven. Three reheating methods didn’t show any difference in taste, odor, color, and texture of Buchu-jeon at 3°C for 3 days. The Buchu-jeon reheated in microwave oven at 3°C for 5 days had a significant (p<0.05) lower score odor and color than the ones reheated in frying pan and steam/convection oven. The safety of Buchu-jeon was also evaluated by measuring total count, coliform count, psychrotrophic count, acid value and peroxide value during 5 days of storage periods at 4°C. Total counts of Pajeon was ranged from 5.0x10¹ CFU/g to 2.2x10³ CFU/g and the coliform and psychrotrophs were not detected at most experiments. The acid values were ranged from 1.80 to 2.18 mg of KOH/g of fat until 5 days at 4°C. And the peroxide values were ranged from 4.44 to 17.87 meq of peroxide/kg of fat until 5 days of storage period. Therefore, these results demonstrated that the cook-chilled Buchu-jeon is microbiologically and chemically safe during 5 days of storage period at refrigeration temperature.

Key words: cook-chilled Buchu-jeon, sensory evaluation, safety evaluation
다(5-7). 특히 단체금식소에서는 cook-chill 제품은 관능적
인 품질이 우수하고, 단기간 저장하되 매우 효과적인 방법
이라 보고되고 있다(8-10). 또한 cook-chill 시스템은 노동력
의 효율적인 관리와 향상된 음식 만족도를 제공하
는 가공메뉴에서도 널리 이용되고 있다. P(11)의 연구에서
도 병원급식에서 중앙공급식 cook-chill 시스템을 통해 인근
의 여러 병원에도 음식을 공급함으로써 생산성이 향상되었
음을 보도하였다.

우리나라의 경우, 여러 가지 다양한 가공식품들이 개발되
고 있으나 아직 cook-chill 시스템을 활용한 식품의 유
통에 대한 인식이 부족하여 이 시스템을 적용시킨 음식 개
발은 미흡한 상태이다. 그러나 앞으로 우리 고유의 전통음
식을 발전, 보급하기 위해서는 지금까지의 생산방식에서 벗
어난 현대적인 개념의 과학공급체계의 활용이 필요하다.
따라서 cook-chill 시스템은 현급의 음식 수요에 맞는
가능성을 높이는 계획에 사용되어 개발하는 경우, 급식소에서는
인건비 절감, 제품의 위생관리 면에서의 안전성 확보 뿐만 아
너다 식단에도 자주 이용할 수 있으며 전통 음식의 국내
공급을 확대시킬 수 있고 재소문의 부가가치를 높일 수 있
을 것이다. 또한 이는 장기적인 관점에서는 수출 상품으로
활용할 수 있으므로 우리 음식의 해외 진출도 가능하게
할 수 있다. 그러광 국내에서도 cook-chill 시스템을 이용한
제품에 대한 연구가 수행되었는데 보리밥(12), 미슬죽(13),
고등어 야끼미조(14), 고등어요조(15) 등이 있으나 제
소간에 관한 연구는 매우 미미한 실정이다.

이에 본 연구에서는 소비자들의 선호도가 높은 부추점을
cooking 시스템에 적용시킨 후, 후라이 팬, steam/convec-
tion oven 및 전자레인지의 세 가지 방법으로 재가열한 후
이에 대한 관능적 품질을 평가하여 단체급식소에서의 활용
가능성을 확인하였다. 또한 cook-chill 시스템으로 개발된
부추점을 일정기간동안 저장시킴으로써 실험할 수 있는 안
전성 문제를 확인하기 위해 미생물과 지반에 관한 안전성을
평가하였고 그리하여 cook-chill 부추점이 단체급식소에서
효과적인 새로운 판매방안으로 활용되는데 필요한 기초 자료
를 제공하고자 한다.

재료 및 방법
재료준비 및 조리
Cook-chill 부추전 개발에 사용될 부추와 조각상, 홍합, 청고추, 흰고추, 오장아, 당근 과다, 밀가루(주)백설과, 보리
가루(주)오리가루, 흰가루(주)오리가루, 당과, 대두유(주) 백설과, 소금(주)한으 등은 본 연구에서의 품질에 맞는 음식
재료에 맞게 구입하였고 대두유를 30%의 품질을 보존
하였다. 부추점의 조리법은 단체급식용 표준조리서(16) 및
학교급식소 3곳, 산림교육소 3곳에서 조사한 일반조리법
을 기준으로 최종적인 표준조리법을 결정하여 조리하였다.

부추점의 기본재료는 20인분을 기준으로 부추 200g, 홍고추
30g, 청고추 30g, 오장아 140g, 당근 60g, 양파 60g, 밀가루
160g, 밀가루 110g, 흰가루 50g, 소금(주) 57g, 소금 5g, 단장
83g, 시금치 50g이었다. 준비한 재료는 밀가루, 단과
소금과 밀가루를 8cm, 세
로 12cm, 두께 0.3cm의 크기를 1인분으로 기초 팬에
서 조리하였다.

금속 납작 방법
조리된 부추전 2개를 2개의 식판에 나누어 놓아서 blast
chiller(MA5 M, IRINOX, Italy)에서 급속 냉각(조건: -18°C
에서 30분)시킨 후, PE bag(186 mm x 250 mm)에 5개씩 담
아 Impulse sealer(동서포장기계산업, Korea)로 실장을
후 방장보관시켰다. 방장보관은 4°C의 냉장고(Dae woo Elec-
tronics, Korea)를 이용하여 5일까지 저장하면서 관능평가
및 안전성 평가를 실시하였다.

제가열 방법
관능평가를 실시하기 위해 cook-chill 처리한 부추점을 3
가지 방법으로 재가열하였다. 첫 번째로는 식품을 개열한
후, 후라이 팬에서 재가열하는 방법, 두 번째는 steam/convec-
tion oven(Convotherm-OD 6.10, Germany)에서 재가열
하는 방법, 세 번째는 전자레인지(M-2000P, LG Elect-
nronics, Korea)를 이용한 방법으로 재가열하였다. 최종 재가열
온도는 음식의 위생학적 안전도를 고려한 내부온도와 관능
적 만족을 고려하여 설정하였다. 최종가열 온도의 대상 Dahl
등(5)은 음식의 내부온도가 74°C 이상인 경우 미생물적
품질상 문제가 없다고 하였고 Dennis와 Stringer(6)는
70°C에서 2분 동안 재가열하면 미생물적으로 안전하다고 하
여 본 연구에서도 비교적 안전한 기준으로, 음식의 내부온도
가 70-74°C가 되는 시간을 미생물적으로 안전한 제가열 온
도시간의 기준으로 정하였다. 이를 기준으로 하여 여러
차례의 에비식품을 통해 제가열 조건을 설정하였다. 제가열
조건은 후라이 팬에서 재가열하는 경우, cook-chill 부추전
의 내부온도가 71°C에서 2분 30초 동안으로 설정하였다.
Steam/convection oven의 경우, Zacharias(7)는 재가열시
oven의 내부 온도 조건은 130~150°C가 바람직하다고 하여
본 연구에서는 steam/convection oven의 가열조건은 150°C
에서 5분간으로 실시하였고, cook-chill 부추전에서는 내부
온도 75°C에서 45초 동안 가열하는 것으로 설정하였다. 전자
레인지의 경우, cook-chill 부추전의 내부온도가 75°C에서 1분
5초 동안 가열하는 것으로 설정하였다.

관능평가
관능평가는 cook-chill 처리한 부추점을 1일, 3일, 5일간
4°C에서 보존 저장한 후 실시하였다. Cook-chill 처리 후 논
강 저장된 부추점을 후라이 팬, steam/convection oven과
전자레인지에서 각각 재가열한 후 비교하는 방법을 적용하였으

Cook-chill 부추점의 관능성 및 안전성 평가
851
결과 및 고찰

제가열 방법 및 저장기간에 따른 cook-chill 부추진의 관능평가

제가열 방법에 따른 cook-chill 부추진의 관능평가:

후라이팬, steam/convection oven 및 전자렌지에서 제가열한 cook-chill 부추진(실험군)과 전통적인 조리법을 이용하여 우유 영양소, 경양성 향품 등을 측정하였다. 4°C에서 1일동안 저장 후 후라이팬, steam/convection oven 및 전자렌지로 재가열한 실험군 부추진은 대조군 부추진보다 냄새, 맛, 식감, 잔감성, 가미있는 특성에 제가열 방법에 따른 유의있는 차이를 보이지 않았고 낮어서만 전자렌지에서 제가열한 부추진이 다른 부추진보다 유의적(p<0.01)으로 가장 낮은 관능평가 점수를 나타내었다. 4°C에서 3일간 저장 후 3가지 제가열 방법에 따른 부추진의 관능평가 점수를 살펴보면, 낮, 맛, 식감, 잔감과 모든 특성에서 제가열 방법에 따른 유의있는 차이를 보이지 않았다. 후라이팬을 이용하여 제가열한 부추진과 대조군이 steam/convection과 전자렌지보다 낮, 맛, 식감에서 높은 점수를 보였으나 잔감성에서는 낮은 관능평가 점수를 보였다.

4°C에서 5일간 저장 후, 3가지 제가열 방법에 따른 부추진의 관능평가 점수를 살펴보면, 낮과 냄새는 전자렌지에서 제가열한 부추진이 대조군과 후라이팬 및 steam/convection oven에서 제가열한 부추진보다 유의적(p<0.05)으로 낮은 관능평가 점수를 보였다. 식감에서는 전자렌지에서 제가열한 부추진이 후라이팬에서 제가열한 부추진과 대조군보다 유의적(p<0.05)으로 낮은 평가 점수를 나타내었으나 steam/convection oven에서 제가열한 부추진과는 유의적인 차이를 보이지 않았다.

Cremers(21)의 연구에서, scrambled eggs는 전자렌지에서 식가열한 것이 convection oven에서 식가열한 것보다 냄새, 식감, 잔감 및 일반적인 수용도에서 유의적으로 높은 점수가 나타났으나 beef patties는 convection oven에서 제가열한 것이 외관, 낮, 식감, 일반적인 수용도에서 유의적으로 높은 점수를 보였다고 보고하면서 제가열을 위한 적절한 기기는 각 음식의 특성에 따라 다르므로 제가열 기기는 메뉴를 고려하여 설계해야 함을 제시하였다. 그러나 Chu와 Torna(22)는 steaming과 전자렌지를 이용하여 가열한 제품의 경우, 밀랍식은 천으로 전자렌지에서 가열한 제품의 관능점수가 유의적으로 낮았을 뿐 외관, 잔감, 간각적인 수용도에서는 유의적인 차이가 없었다고 하였다. Kwak 등 (23)의 cook-chill 고온저감에 대한 연구에서는 steam convection oven으로 제가열 처리했을 때 전자렌지에서 사용한 경우보다 낮은 관능평가 점수를 보였지만 유의적인 차이 는 없었다고보고하였다. Cremers(24)의 스파게티 제가열에 대한 연구에서는 convection oven과 전자렌지를 사용하여 제가열한 스파게티의 관능적인 면에서 큰 차이는 보이지 않았다.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Storage time (days)</th>
<th>Freshly prepared (control group)</th>
<th>Cook-chilled Buchu-jeon (experimental group)</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frying pan</td>
<td>Steam/convection oven</td>
<td></td>
</tr>
<tr>
<td>Taste</td>
<td></td>
<td>6.43±0.72a</td>
<td>6.43±0.72</td>
<td>6.43±0.72</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6.43±0.72a</td>
<td>6.46±0.72</td>
<td>6.43±0.72</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.43±0.72a</td>
<td>6.38±1.20</td>
<td>6.43±0.72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.43±0.72a</td>
<td>5.61±1.53</td>
<td>6.38±1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.61±1.53a</td>
<td>5.71±1.30</td>
<td>5.61±1.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.61±1.53a</td>
<td>5.49±1.44*</td>
<td>3.931*</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>6.311**</td>
</tr>
<tr>
<td>Odor</td>
<td></td>
<td>6.21±0.85a</td>
<td>6.21±0.85</td>
<td>6.21±0.85</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6.21±0.85a</td>
<td>6.33±1.39*</td>
<td>5.14±1.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.47±1.47</td>
<td>5.71±1.45</td>
<td>5.76±1.41</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.95±1.46a</td>
<td>5.90±1.51*</td>
<td>6.47±1.61</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>5.384*</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>6.17±0.77</td>
<td>6.17±0.77</td>
<td>6.17±0.77</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6.21±1.28a</td>
<td>6.38±1.39*</td>
<td>5.95±1.28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.38±1.07</td>
<td>5.80±0.87</td>
<td>6.00±1.92</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.17±1.48*</td>
<td>5.85±1.68*</td>
<td>5.32±1.63</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>2.740*</td>
</tr>
<tr>
<td>Texture</td>
<td></td>
<td>6.04±1.42</td>
<td>5.95±1.46</td>
<td>6.04±1.42</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6.04±1.42</td>
<td>6.42±1.07</td>
<td>6.04±1.42</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.04±1.42</td>
<td>6.33±1.27</td>
<td>6.33±1.68</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.19±1.56*</td>
<td>6.47±1.21</td>
<td>6.57±1.16</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>3.933*</td>
</tr>
</tbody>
</table>

1. Mean based on evaluation of 9 panels, 3 replication of study, and score from 1 to 9.
2. Mean±SD.
3. Means with different capital letters in a column and small letters in a row are significantly different by Duncan’s multiple range test at p<0.05.
4. Not significant.

.opacity

본 연구의 cook-chill 부추전의 1일, 3일, 5일 저장기간 동안 재가열 방법에 따른 관능평가 점수 결과를 살펴보면, 실험군의 저장기한에서 재가열한 부추전의 관능평가 점수가 전체적으로 낮게 나타났으나 실험군의 후라이팬에서 재가열한 부추전의 관능평가 점수는 저장 5일에서 약간의 낮은 관능평가 점수를 나타내었으며 유의적인 차이를 보이지 않았다. 따라서 국내 단체급식소에서는 전 부드러운 요리에 주로 후라이팬을 사용함으로써 cook-chill 부추전을 개발하는 경우, 급식소에서 손쉽게 공급할 수 있어 우리 음식을 보급하는데 많은 도움이 될 것으로 사료할 수 있었다.

저저장기간에 따른 cook-chill 부추전의 관능평가: 4℃에서 1, 3, 5일간 저장 보관 후, 후라이팬으로 재가열한 부추전(실험군)과 측정에서 조리한 부추전(대조군)의 관능평가를 비교하였다(Table 1). 각 날짜별 점수는 재가열한 부추전은 질감, 모두에서 저장기간에 따른 유의적인 차이를 보이지 않았으나 저장 5일에 낮은 점수 차이를 보였고, 색상과 질감에서는 대조군보다 후라이팬에서 재가열한 실험군의 관능평가 점수가 더 높게 나타났다. Kim과 Kim(25)의 연구에서, cook-chill 빈테일을 2주간 냉장 저장 후 후라이팬에서 재가열 처리한 결과, 냄새, 질감의 단단함, 외관에서 유의적으로(p<0.01) 낮은 점수를 나타났는데 이는 두의 비만벽의 지표가 그 원인이라고 보고하였다. Light와 Waker(9)도 cook-chill 제품들 은 1~3℃에서 1일 보관하는 경우 관능적 특성이 거의 변화가 없지만 3일 저장 시에는 거의 대부분의 관능적 특성이 다르게 변했다고 보고하였다. Hong(26)도 cook-chill 제품은 제품을 준비한 날로부터 소비하는 날을 포함하여 5일 이상을 초과하지 않는 것이 비확하다고 보고하였다. 본 연구 결과에서도 cook-chill 부추전을 후라이팬으로 재가열하는 경우, 저저장기간에 따른 유의적인 차이는 보이지 않았으나 해체가 포함되어 있는 부추전의 경우, 재료의 신선도 유지 면에서 보았을 때, 5일 이상의 저저장은 바람직하지 않다고 볼 수 있었다.

4℃에서 1, 3, 5일간 저장보관 후, steam/convection oven으로 재가열한 부추전(실험군)과 측정에서 조리한 부추전(대조군)의 관능평가 결과, 각 날짜별 점수는 저장기간에 따른 유의적인 차이를 보이지 않았으나 저장 3일부터는 관능평가 점수가 낮게 나타났다. 저장기간은 저장 5일에 유의(p<0.05)로 낮은 관능평가 점수를 나타내었다. Kang 등(12)의 cook-chill 전문제품에 대한 연구에서, cook-chill 참
발 폐사증의 경우, 3일 저장 후 steam/convection oven으로 재가열한 결과, 다른 항목은 유의적인 차이가 없었으나 색상과 혼합성에서 조리 탑업보다 유의적(p<0.05)으로 낮은 판능평가 점수를 보였고, cook-chill 약물의 경우, 저장 3일에서 steam/convection oven으로 재가열한 결과의 임자 화합성도 유의적(p<0.01)으로 낮은 판능평가 점수를 보였고 보호하였다. Zacharias는 여러 연구 결과, 낮은 저장 제품의 수명은 제품에 따라 다르며, 2℃에서 저장한 제품의 경우, 재소유식은 2~9일, 전분이 함유된 음식은 4~10일 저장하는 것이 바람직하다고 보고하였다. Kang 등(14)의 연구에서, cook-chill 고등어구이와 오징어 볶고기구이를 steam/convection oven으로 재가열한 경우, 낮은 저장 3일까지 판능평가에서 유의적인 차이가 없었으나 기차미조림의 경우, 3일 후 느렸던 판능평가 점수는 유의적이므로 (p<0.05) 낮었다고 보고하였다. 본 연구에서 cook-chill 부추전을 steam/convection oven으로 재가열한 경우, 저장 3일까지 유의적인 차이가 없었으나 3일까지 저장하지 않는 것이 바람직하다고 보였다.

4℃에서 1, 3, 5일간 냉장 보관 후, 전자렌지로 재가열한 부추전(일명구)과 측식에 재가열한 부추전(대조군)의 판능 평가 결과에서, 맛에서는 저장 5일째에서 유의적(p<0.01)으로 가장 낮은 판능평가 점수를 보였다. 맛에서의 1일 저장 5일째 저장한 부추전이 대조군보다 유의적(p<0.01)으로 낮은 판능평가 점수를 보았다. 색상과 절감에는 저장기간에 따른 유의적인 차이를 보이지 않았으나, 5일 저장한 부추전의 판능평가 점수가 가장 낮게 나타났다. Kwak 등(23)의 연구에서는 고등어조림을 전자렌지로 재가열한 후 판능평가한 결과, 전통적인 쌀밥탕에의 판능평가에서 잔치에 유의적으로 감소하는 경향을 보였으나, 맛과 절감의 신호도 참조 7일동안 큰 변화가 없었다고 보고하였다. 본 연구의 cook-chill 부추전은 전자렌지로 재가열한 경우, 5일 저장시 맛, 색상, 절감에서 가장 낮은 판능평가 점수가 나타나 전자렌지로 재가열한 경우 냉장 기간은 5일 미만으로 하는 것이 바람직하다고 사료된다.

안전성 평가

전통적인 부추전을 cook-chill system을 적용하여 단백질 식소에 제공하기 위한 미생물적 안전성 확보를 위한 실험은 총균수, 대장균군수, 저온성균군수를 측정함으로써 평가하였다. Table 2는 부추전을 후라이 팬으로 이용하여 제조한 후 5일간의 냉장 저장기간 동안 생성된 총균수, 대장균군수, 저온성균군수이다. 실험결과 총균수는 첫날 2.2×10^7 colony forming unit (CFU)/g으로 측정한 후, 5일동안의 냉장 저장기간 동안 성장된 총균수, 대장균군수, 저온성균군수는 10^8 CFU/g으로 증가하였다. Post-ripening periods으로 제조한 다른 논문결과의 경우 100도 이상에서 가열한 안전 조리식품의 미국국(13) 그리고 고등어조림(13)에서는 총균수 실험결과 미생물이 환경되지 않은 반면 부추전은 제조가 완전히 조리되지 않은 상태로 발생할 수 있기 때문에 총균수 실험결과 미생물이 10^8에서 10^9 내외의 수치가 관찰되었다. 그리고 부추전의 총균수는 고등어기름장제기에서 나타난 10^4~10^5 내외의 수치(13)에 비해서는 적은 것으로 관찰되었는 데 한빛사상의 경우 포자 생성균인 고초균(Bacillus subtilis)이 많기 때문에 높은 수치가 나온 것으로 추정된다. 따라서 조리식품의 종류와 조리 방법에 따라 cook-chill system을 적용했을 때 조리 식품이나 총균수가 달라질 수 있는 것으로 확인되었으며 부추전인 경우 냉장저장 기간 중 미생물 증식이 관찰되지 않고 오히려 세균수가 줄어들어 안전성에 큰 문제가 없는 것으로 나타났다.

식품위생 지표군으로 사용되는 대장균군은 부추전에서 조리 직후부터 서식하여 5일간 냉장 저장기간 동안 접촉되지 않았다. 대장균군이 부추전의 조리과정에서 사용하는 것으로 나타났고 또한 냉장저장 중에도 살아있는 대장균군은 관찰되지 않았다. 냉장고에서 서식하는 특성 때문에 cook-chill system에서 중요한 저온성균은 실험결과 대부분의 식품에서 관찰되지 않았으나 냉장저장 후 5일째에 3.3×10^3 의 적은 수의 군이 검출되었다. 이는 아마도 조리과정에서 살아남은 일부 저온성균이 검출된 것으로 사료된다. 그러나 5일째에는 저온성균이 검출되지 않았다. 따라서 냉장 저장 후 대장균군과 저온성균에 대해서 안전성이 큰 문제가 없는 것으로 확인되었다.

Table 3은 cook-chill 부추전을 만든 후 당일과 5일간 냉장 저장한 식품의 산가과 과산화물의 실험결과이다. 산가는 일때에 조리한 부추전에서 1.80 mg of KCl/g of fat의 값이 나타났고 냉장 저장 후 5일째에는 큰 변화없이 2.18의 수치를 나타내었다. 이러한 결과로 저장기간 중 후라이 팬으로 조리한 부추전의 산가 증가는 하였다.3 귀자이가

<table>
<thead>
<tr>
<th>Storage time (days)</th>
<th>Total count</th>
<th>Coliform count</th>
<th>Psychrotroph count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.2×10^7</td>
<td>ND^1</td>
<td>ND</td>
</tr>
<tr>
<td>1</td>
<td>1.5×10^7</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>5.0×10^7</td>
<td>ND</td>
<td>3.3×10^4</td>
</tr>
<tr>
<td>5</td>
<td>1.8×10^7</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

1^Not detected.

Table 3. Acid values and peroxide values of cook-chilled Buchu-jeon during storage periods

<table>
<thead>
<tr>
<th>Storage time (days)</th>
<th>Acid value (mg of KOH/g of fat)</th>
<th>Peroxide value (meq of peroxide/kg of fat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.80±0.07^1</td>
<td>4.44±1.70</td>
</tr>
<tr>
<td>5</td>
<td>2.18±0.45</td>
<td>17.87±4.410</td>
</tr>
</tbody>
</table>

1^Mean±SD.
Cook-chill 부추진의 관능성 및 안전성 평가

나타나지 않는다는 것이 확인되었다. Kwak 등(23)이 고등도 조리 식품의 산가가 0일째 4.14, 그리고 낭장장장 5일째 4.51의 수치가 나타난 결과에 비하면 부추진이 상대적으로 낮은 산가를 가진 것으로 나타났다. 식품공전에 의하면 부추진에 대한 산가의 기준이 있으나 뇌김을 기준으로 하면 산가 5에 하이로 안전성에는 큰 문제가 없는 것으로 확인되었다(27).

파산화 물기는 0일에는 후라이 패에서 조리한 부추진에 서 4.44 meq of peroxide/kg of fat의 수치를 나타내었다. 낭장장장 5일째에는 17.87의 높은 수치를 나타내었다. 5일째의 수치는 0일째에 비해 약 4.02배 증가한 것으로 파산화물기는 낭장 장장 중에 산가의 증가에 비해 월안 큰 증가를 보여주었다. 식품공전에 부추진에 대한 파산화물기의 기준이 없지 만 뇌김류에서 파산화물기의 허용 기준이 60이하므로 파 산화물기는 큰 문제가 없는 것으로 확인되었다(27).

요 약

단체 급식소에서 부추진의 활용도를 높이기 위해 cook-chill 처리한 부추진을 개발하여 5일간 4℃에서 낭장 저장하는 동안 후라이 패, steam/convection oven. 전자렌지의 이용하여 재가열한 후 관능평가를 수행하였고 저장기간에 따른 안전성에 대해 평가하였다. 재가열 방법에 따른 차이에 따라, 낭장 1일 저장 후 찐, 낭장, 저장에서는 재가열 방법에 따른 유의적인 차이를 보이지 않았지만 전자렌지를 이용한 경우, 냉비에서 유의적(0.01)으로 낮은 점수를 나타냈다. 3일 저장 시에는 전반적으로 후라이 패에서 재가열한 부추진이 steam/convection oven과 전자렌지를 재가열한 부 추진보다 높은 관능평가 점수를 보였지만 찐, 낭장, 식사상에서는 유의적인 차이를 보이지 않았다. 낭장 5일 저장한 부추진은 전자렌지를 사용한 경우, 찐, 낭장, 식사상에서 유의적 (0.05)으로 낮은 관능평가 점수를 나타냈다. 낭장 저장기간에 따른 차이에서 후라이 패를 사용하여 재가열한 경우, 낭장상태로 5일간 저장하는 동안 모든 관능 특성에 유의 적한 차이를 보이지 않았다. Steam/convection oven에서 재 가열한 경우 찐에서만 저장 5일에서 유의적(0.05)으로 낮은 관능평가 점수가 나타났다. 전자렌지를 재가열한 경우 찐과 낭장 항목에서 저장 5일에서 유의적(0.01)으로 낮은 관능평가 점수를 보였다. Cook-chill 부추진의 안전성 평가에서 낭장 저장하는 5일 동안 실험결과 총균은 약 10^2에서 10^3사이의 수치가 판장되었다. 대장균과 쩐균균은 실시한 대부분의 실험에서 검출되지 않았으나 쩐균균균은 3일째 실험에서 소수로 검출되었다. 산가인 경우 낭장장 장기간 동안 2.18이하의 적은 범위로 증가하여 안전성에는 큰 문제가 없는 것으로 확인되었고 파산화물기도 수치가 낮 아서 안전성에는 문제가 없는 것으로 확인되었다. 따라서 cook-chill 시스템을 이용하여 제조한 부추진에서 낭장 저장기간 동안 미생물적 그리고 화학적인 안전성은 큰 문제가 없는 것으로 확인되었다.

감사의 글

본 연구는 한국과학재단 목적기관연구(R04-2002-000- 00045-0)지원으로 수행된 연구결과의 일부이며, 연구비 지원에 감사드립니다.

문헌

(2005년 4월 11일 접수; 2005년 6월 20일 제히)