DOI QR코드

DOI QR Code

복잡 해안지역 해상풍 모의의 정확도 개선- I : 현업모델의 평가

배주현;김유근;오인보;정주희;권지혜;서장원
Bae Joo-Hyun;Kim Yoo-Keun;Oh In-Bo;Jeong Ju-Hee;Kweon Ji-Hye;Seo Jang-Won

  • 발행 : 2005.07.01

초록

In this study, we focused on the improvements in the simulation of sea surface wind over the complex coastal area. MM5 model being currently used to predict sea surface wind at Korea Meteorological Administration, was used to verify the accuracy to estimate the local wind field. A case study was performed on clear days with weak wind speed(4 m/s), chosen by the analysis of observations. The model simulations were conducted in the southeastern area of Korea during the selected periods, and observational data such as AWS, buoy and QuikSCAT were used to compare with the calculated wind components to investigate if simulated wind field could follow the tendency of the real atmospheric wind field. Results showed that current operational model, MM5, does not estimate accurately sea surface wind and the wind over the coastal area. The calculated wind speed was overestimated along the complex coastal regions but it was underestimated in islands and over the sea. The calculated diurnal changes of wind direction could not follow well the tendency of the observed wind, especially at nighttime. In order to exceed the limitations, data assimilation with high resolution data and more specificated geographical information is expected as a next best policy to estimate accurately the environment of local marine wind field.

키워드

Complex coastal area;Wind field;Sea surface wind;MM5;Quik

참고문헌

  1. Lie, H. J., I. K. Bang, S. S. Yook and C. W. Lee, 1983, Analysis of meteorological data at coastal weather station around Korea, KORDI. BSPE 00053-74-1, 108pp
  2. 나정열, 팽동국, 1992a, 동해 남서해역의 해류 및 열구조에 미치는 해상풍의 영향, 한국수산학회지, 25(1), 15-28
  3. 나정열, 서장원, 한상규, 1992b, 한국근해의 월평균 해상풍, 한국해양학회지, 27(1), 1-10
  4. Kang, I. S., M. K. Kim and T. Shim, 1994, Seasonal variation of surface heat budget and wind stress over the seas around the Korean Peninsula, J. Oceanol. Soc. Korea, 29(4), 325-337
  5. Lie, H. J., J. Y. Na, S. K. Han and J. W. Sea, 1994, Monthly mean sea surface winds over the East China Sea, KORDI Rep. BSPE 00367-683-1, 91pp
  6. Han, S. K., H. J. Lie and J. Y. Na, 1995, Temporal and spatial characteristics of surface windsover the adjacent seas of the Korean Peninsula, J. Oceanol. Soc. Korea, 30(6), 550-564
  7. Na, J. Y. 1988, Wind Stress distribution and It's Application to Upper-Layer Structure in the East Sea of Korea, J. Oceanol. Soc. Korea, 23(3), 97-109
  8. Sekine, Y., 1987, Wind-driven Circulation in the Japan Sea and its Influence on the Branching of the Tsushima Current, Prog/Oceanogr., 17, 297-312
  9. Na, J. Y. and B. H. Kim, 1990, A Laboratory of Formation of 'The Warm Core' in the East Sea of Korea, Bull. Korean Fish. Soc., 22(6), 415-423
  10. 이동규, 권재일, 한상복, 1998, 감포-을기 연안해역에서 발생하는 냉수대 현상과 해상풍과의 관계, 한국수산학회지, 31(3), 359-371
  11. 이미선, 2003, 위성 자료와 약 제약 조건 4DVAR 가 호우 모의에 미치는 영향, 서울대학교 박사 학위 논문, 268pp
  12. Dudhia, J., 1993, A nonhydrostatic version of the penn state/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front, Mon. Wea. Rev., 121, 1493-1513 https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
  13. Kain, H. S. and J. M. Fritsch, 1993, Convective parameterization for mesoscale models; The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246
  14. 전혜진, 안희수, 1997, 조석잔차류와 해상풍에 의한 황해와 동중국해의 해수 순환과 부유물 이동 모델 연구, 한국지구과학회지, 18(6), 529-539

피인용 문헌

  1. The Characteristics in the Simulation of High-resolution Coastal Weather Using the WRF and SWAN Models vol.23, pp.3, 2014, https://doi.org/10.5322/JES.2005.14.7.657