DOI QR코드

DOI QR Code

한국 연안 해조류의 미량금속 함량

Trace Metal Contents in Seaweeds from Korean Coastal Area

  • 김지회 (국립수산과학원 식품위생팀) ;
  • 목종수 (국립수산과학원 식품위생팀) ;
  • 박희연 (국립수산과학원 식품위생팀)
  • Kim, Ji-Hoe (Food Sanitation Research Team, National Fisheries Research & Development Institute) ;
  • Mok, Jong-Soo (Food Sanitation Research Team, National Fisheries Research & Development Institute) ;
  • Park, Hee-Yeon (Food Sanitation Research Team, National Fisheries Research & Development Institute)
  • 발행 : 2005.08.01

초록

우리나라 연안에서 생산되는 미역, 김, 파래등 식용 해조류뿐만 아니라 비식용 해조류의 미 량금속 오염 실태를 파악하여 연안산 해조류의 식품 위생학적 안전성을 확보하고자 수은, 카드뮴, 납, 구리, 아연, 니켈, 망간 및 크롬 등을 대상으로 그 함량을 조사하였다. 해조류 총 620건의 시료에 대한 채취지역별 미량금속 함량을 비교한 결과, 수은, 카드뮴, 니켈 및 망간 등은 충남 태안 지역에서 대체로 높게 검출되었고, 크롬은 영덕, 구리는 통영 그리고 납과 아연은 울산지역이 높게 검출되는 경향을 나타내었다. 해조류의 미량금속은 아연, 망간, 리 순으로 우리 체내에서 없어서는 안될 필수성분들의 함량이 높았으며, 다음으로 크롬,니켈, 납의 농도는 비슷한 수준이었고, 카드뮴, 수은 순이었다 또한, 갈조류에서 수은과 카드뮴이 높게, 녹조류에서 크롬, 구리, 망간, 니켈, 납이 높게 그리고 홍조류에서는 아연이 대체로 높게 검출되었다. 식용 해조류의 미량금속 함량은 우리나라의 해산 어$\cdot$패류의 미량금속 잔류허용기준(생물기준, 수은 0.5ppm, 납 및 카드뮴 2.0ppm)과 비교할 때 대단히 낮은 수준이었다. 전국연안에 넓게 분포하며 해안지선에서 쉽게 채취할 수 있는 비식용 해조류인 지충이는 카드뮴과 망간의 biomonitor로, 그리고 애기마디잘룩이와 지누아리는 각각 니켈과 아연의 biomonitor로 유용할 것으로 사료된다. 또한, 식용으로서 이용도가 낮은 갈조류인 고리매는 크롬과 납의 biomonitor로 사용되어질 수 있을 것으로 판단된다.

참고문헌

  1. Nishizawa K, Murasugi S. 1988. Kaisounohon. Kenseisha, Tokyo. p 215
  2. Cho DM, Kim DS, Lee DS, Kim HR, Pyeun JH. 1995. Trace components and functional saccharides in seaweed - 1. Changes in proximate composition and trace element according to the harvest season and places. Bull Kor Fish Soc 28: 49-59
  3. KREI (Korea Rural Economic Institute). 2003. Food Balance Sheet (2002). p 277
  4. 淺川明彦. 1994. 海藻と元素の話.水産の研究 13:77-81
  5. Conti ME, Cecchetti G. 2003. A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. Environ Res 93: 99-112 https://doi.org/10.1016/S0013-9351(03)00012-4
  6. Kim CY. 1972. Studies on the contents of mercury, cadmium, lead and copper in edible seaweeds in Korea. Bull Kor Fish Soc 5: 88-96
  7. Kim CY, Won JH. 1974. Concentrations of mercury, cadmium, lead and copper in the surrounding seawater and in seaweeds, Undaria pinnatifida and Sargassum fulvellum, from Suyeong Bay in Busan. Bull Kor Fish Soc 7: 169-178
  8. Pak CK, Yang KR, Lee IK. 1977. Trace metals in several edible marine algae of Korea. J Oceanol Soc Kor 12: 41-47
  9. Lee JH, Sung NJ. 1980. The content of minerals in algae. J Kor Soc Food Nutr 9: 51-58
  10. Choi SN, Lee SU, Chung KH, Ko WB. 1998. A study of heavy metals contents of the seaweeds at various area in Korea. Kor J Soc Food Sci 14: 25-32
  11. MOMAF (Ministry of Maritime Affairs & Fisheries). 2002. Standard Methods for Marin Environment. p 330
  12. Farias S, Arisnabarreta SP, Vodopivez C, Smichowski P. 2002. Levels of essential and potentially toxic trace metals in Antarctic macro algae. Spectrochim Acta Part B 57: 2133-2140 https://doi.org/10.1016/S0584-8547(02)00183-0
  13. Campanella L, Conti ME, Cubadda F, Sucapane C. 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environ Pollut 111: 117-126 https://doi.org/10.1016/S0269-7491(99)00327-9
  14. Topcuoglu S, Guven KC, Balkis N, Kirbasoglu C. 2003. Heavy metal monitoring of marine algae from the Turkish coast of the Black Sea, 1998-2000. Chemosphere 52: 1683-1688 https://doi.org/10.1016/S0045-6535(03)00301-1
  15. AI-Masri MS, Mamish S, Budier Y. 2003. Radionuclides and trace metals in eastern Mediterranean Sea algae. J Environ Radioact 67: 157-167 https://doi.org/10.1016/S0265-931X(02)00177-7
  16. Ho YB. 1987. Metals in 19 intertidal macroalgae in Hong Kong waters. Mar Pollut Bull 18: 564-565 https://doi.org/10.1016/0025-326X(87)90542-X
  17. de Moreno JEA, Gerpe MS, Moreno VJ. 1997. Heavy metals in Antarctic organisms. Polar Biol 17: 131-140 https://doi.org/10.1007/s003000050115
  18. Kim SK, Lee JW, Kim AJ. 1997. The study on the sea food pollution according to environmental pollution of the western coast in Korea ( I . Fish). J Korean Soc Food Sci Nutr 26: 851-859
  19. Sanchez-Rodriguez I, Huerta-Diaz MA, Choumiline E, Holguin-Quinones O, Zertuche-Gonzalez JA. 2001. Elemental concentration in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ Pollut 114: 145-160 https://doi.org/10.1016/S0269-7491(00)00223-2
  20. Gnassia-Barelli M, Lemee R, Pesando D, Romeo M. 1995. Heavy metal distribution in Caulerpa taxifolia from the north-western Mediterranean. Mar Pollut Bull 30: 749-755 https://doi.org/10.1016/0025-326X(95)98341-S
  21. Ishii T, Suzuki H, Koyanagi T. 1978. Determination of trace elements in marine organisms- I . Factors for variation of concentration of trace elements. Bull Japan Soc Sci Fish 44: 155-162 https://doi.org/10.2331/suisan.44.155
  22. Ishikawa M, Izawa G, Omori T, Yoshihara K. 1987. Annual variation of elemental quantities in brown sea algae Hijiki, Hijikia fusiform. Nippon Suisan Gakkaishi 53: 853-859 https://doi.org/10.2331/suisan.53.853
  23. Hu S, Hung C, Wu M. 1996. Cadmium accumulation by several seaweeds. Sci Total Environ 187: 65-71 https://doi.org/10.1016/0048-9697(96)05143-1
  24. Ikebe K, Nishimune T, Tanaka R. 1991. Contents of 17 metal elements in food determined by inductively coupled plasma atomic emission spectrometry. Food Hyg Soc Japan 32: 48-56 https://doi.org/10.3358/shokueishi.32.48
  25. Phaneuf D, Cote I, Dumas P, Ferron LA, LeBlanc A. 1999. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Environ Res Section A 80: S175-S182 https://doi.org/10.1006/enrs.1998.3915
  26. KFDA (Korea Food and Drug Administration). 2000. Food Code. p 45-46
  27. NFRDI (National Fisheries Research and Development Institute). 1995. Supplemented Chemical Composition of Marine Products in Korea. p 74-79
  28. 鹽見一雄. 1999. 藻類の安全性について. 藻類 47: 205-212
  29. van Netten C, Hoption Cann SA, Morley DR, van Netten JP. 2000. Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ 255: 169- 175 https://doi.org/10.1016/S0048-9697(00)00467-8
  30. NFRDI (National Fisheries Research and Development Institute). 2001. NFRDI Research Project Report. p 365-377

피인용 문헌

  1. Ethanol production from Laminaria japonica: Effect of metal ion adsorption vol.18, pp.5, 2012, https://doi.org/10.1016/j.jiec.2012.03.002
  2. Removal of Hazardous Heavy Metals (Cd, Cr, and Pb) from Laver Pyropia sp. with Acid Treatment vol.49, pp.5, 2016, https://doi.org/10.5657/KFAS.2016.0556
  3. Contents and Risk Assessment of Heavy Metals in Marine Invertebrates from Korean Coastal Fish Markets vol.77, pp.6, 2014, https://doi.org/10.4315/0362-028X.JFP-13-485
  4. Comparison of Metal Contents in Seaweeds Collected from the Busan Coastal Area vol.17, pp.9, 2008, https://doi.org/10.5322/JES.2008.17.9.943
  5. Effects of Sea Tangle (Lamina japonica) Powder on Quality Characteristics of Breakfast Sausages vol.30, pp.1, 2010, https://doi.org/10.5851/kosfa.2010.30.1.55
  6. Lead, cadmium and mercury levels in the 2010 Korean diet vol.5, pp.4, 2012, https://doi.org/10.1080/19393210.2012.703699
  7. Heavy Metals (Hg, Pb, Cd) Content and Risk Assessment of Commercial Dried Laver Porphyra sp. vol.45, pp.5, 2012, https://doi.org/10.5657/KFAS.2012.0454
  8. Biochemical Changes in the Hemolymph and Hepatopancreas of Abalone Haliotis discus hannai Exposed to Copper vol.45, pp.2, 2012, https://doi.org/10.5657/KFAS.2012.0154
  9. Contents of Heavy Metals in Marine Invertebrates from the Korean Coast vol.39, pp.6, 2010, https://doi.org/10.3746/jkfn.2010.39.6.894
  10. Mineral Content and Nutritional Evaluation of Marine Invertebrates from the Korean Coast vol.42, pp.2, 2009, https://doi.org/10.5657/kfas.2009.42.2.093
  11. Development of a mercury database for food commonly consumed by Koreans vol.47, pp.5, 2014, https://doi.org/10.4163/jnh.2014.47.5.364
  12. Optimization of Alkail Extraction for Production of Protein Concentrates from Lipid Extracted Algae vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.286