Estimation of Volume Change and Fluid-Rock Ratio of Gouges in Quaternary Faults, the Eastern Blocks of the Ulsan Fault, Korea

울산단층 동부지역 제4기단층 비지대의 체적변화와 유체-암석비에 대한 고찰

  • Chang Tae-Woo (Department of Geology, Kyungpook National University) ;
  • Chae Yeon-Zoon (Department of Geology, Kyungpook National University) ;
  • Choo Chang-Oh (Department of Geology, Kyungpook National University)
  • Published : 2005.09.01

Abstract

Many Quaternary faults are recognized as thin gouge and narrow cataclastic zone juxtaposing the Bulguksa granite and Quaternary deposit bed in the eastern block of the Using Fault, Korea: Gaegok 1, Caegok 2, Singye, Madong Wonwonsa and Jinhyeon faults. This study was performed to calculate chemical change, volume change, silica loss and fluid-rock ratio taken place in gouge zones of these Quaternary faults using XRF, XRD, EPMA. The chemical compositions of fault rocks reveal that the fault gouges are depleted in $SiO_2,\;Na_2\;O,and\;K_2O$ and enriched in $Al_2O_3,\;Fe_2O_3,\;P_2O_5,\;MgO,\;MnO,\;CaO,\;and\;LOI(H_2O+CO_2)$ relative to protoliths. The fact that there is enrichment of relatively immobile elements and depletion of the more soluble elements in the fault gouges relative to protoliths can be explained by fluid-assisted volume loss of $56\%$ for Caegok 1 fault, $22\%$ for Caegok 2 fault,$34\%$, for Singye fault, $8\%$ for Madong fault, $2\%$ for the Wonwonsa fault and $53\%$ for the linhyeon fault. Madong fault and Wonwonsa fault where ratios of the volume change, silica loss and fluid-rock are low might have acted as a closed system for fluid activity, whereas Caegok 1 fault and Jinhyeon fault with high ratios in those factors be an open system. The volumetric fluid-rock ratios range $10^2\sim10^4$ for all faults, being highest in Caegok 1 fault and Jinhyeon fault whose fluid activity was most significant.

References

  1. 경재복, 김성균, 조화룡, Okada, A., Watanabe, M., Susuki, Y., Okike, K., 1995, 울산단층 중앙부의 단층노두와 대지진 발생의 지형적 증거, 제50차 대한지질학회 발표 요약집, p99
  2. 경재복, 이기화, Okada A., Watanabe M., Susuki Y., and Takemura K., 1999, 양산단층 남부 상천리 일대의 트렌치 조사에 의한 단층특성 규명, 한국지구과학회지, 20, 101-110
  3. 김진영, 2000, 울산단층 북동부 지역 제4기 단층의 비지 미구조와 절대연령측정, 경북대학교 석사학위논문
  4. 류충렬, 경재복, 김인수, 1997, 울산단층대 동측으 신기지구조 운동과 지형발달, 대한 자원환경지질학회, 제30차 학술발표회 발표논문 요약집, p14
  5. 손승완, 2001, 한반도 동남부 제4기단층 비지대의 미구조 및 지구화학적 특성, 경북대학교 석사학위논문
  6. 이융희, 2003, 울산단층 동편의 신생대 제4기 단층, 부산대학교 석사학위논문
  7. 장태우, 1998, 양산단층대 단층비지의 K-Ar 연령과 단층운동, 대한지질학회 제53차 학술발표회
  8. 장태우, 추창오, 1998, 동래단층지역 단층비지의 생성과정과 K-Ar 연령, 지질공학회지, 20, 25-37
  9. 장태우, 추창오, 1999, 양산단층대의 단층작용 과정과 단층비지의 K-Ar 연령, 한국지구과학회지, 20, 25-37
  10. 장태우, 2001, 울산단층 동쪽 지괴의 제4기 지구조운동, 지질학회지, 37, 431-444
  11. 장태우, 채연준, 2004, 울산단층 동부지역 제4기 단층비지대에서 단층작용과 열수활동. 지질학회지, 40, 469-479
  12. 정재혁, 장태우, 2004, 한반도 동남부 제3기 어일 및 와읍분지의 지질과 층서. 대한지질학회 2004년 추계학술발표회 초록집, p14
  13. Choo, C. O. and Chang, T. W., 2000, Characteristics of clay minerals in gouges of the Dongrae Fault, Southeastern Korea, and implications for fault activity, Oays and Oay Minerals, 48, 204-212
  14. Christoph, J., Norbert, L., Michael, S., Gray, D.R, 1998, Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analyses and stable isotopic signatures, Tectonophysics, 294, 109-130 https://doi.org/10.1016/S0040-1951(98)00127-9
  15. Christopher, W., 1999, Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones?, Journal of Structural Geology, 21, 1219-1227 https://doi.org/10.1016/S0191-8141(99)00019-X
  16. Essene, E. J. and Peacor, D. R., 1995, Oay mineral thermometry: A critical perspective, Clays and Clay Minerals, 43,540-553 https://doi.org/10.1346/CCMN.1995.0430504
  17. Evans, J. P., and Chester, F. M., 1995, Fluid-rock interaction in faults of San Andreas system: Inferences from San Gabriel fault geochemistry and microstructures. Journal of Geophysical Research, 100, 13007-13020 https://doi.org/10.1029/94JB02625
  18. Goddard, J. V. and Evans, J. P., 1995, Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A., Journal of Structural Geology, 17, 5e'13-547
  19. Grant, J. A. 1986. The isocon diagram-a simple solution to Cresen' equation for metasomatic alteration, Economic Geology, 1976-1982
  20. Gresens, R. L. 1967. Composition-volume relationships of metasomatism. Chemical Geology, 47-65
  21. Jackson, M.L. (1969) Soil Chemical Analysis-Advanced Course. Madison, Wisconsine, 895p
  22. O'Hara, K. 1988. Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting, North Carolina, U.S.A., Tectono-physics, 156, 21-36 https://doi.org/10.1016/0040-1951(88)90280-6
  23. O'Hara, K. and Blackburn, W. H. 1989. Volume loss model for trace element enrichment in mylonite, Geology, 17,524-527 https://doi.org/10.1130/0091-7613(1989)017<0524:VLMFTE>2.3.CO;2
  24. Okada, A, Watanabe, M., Sato, H., Jun, M. S., Jo, W. R, Kim, S. K., Jeon, J. S., Choi, H. C., Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, Southeast Korea, Journal of Geography, Japan, 103, 111-126 https://doi.org/10.5026/jgeography.103.2_111
  25. Schulz, S. E., and Evans, J. P., 1998, Spatial variability in microscopic deformation and composition of the Punchbowl fault, Southern California: implications for mechanisms fluid-rock interaction, and fault morphology, Tectonophysics, 295, 223-244 https://doi.org/10.1016/S0040-1951(98)00122-X
  26. Wintsch, R. P., Christoffersen, R., Kronenberg, A. K., 1995, Fluid-rock reaction weakening of fault zones, Journal of Geophysical Research, 100, 13021-13032 https://doi.org/10.1029/94JB02622