유기인계 및 카바메이트계 농약의 토양흡착성과 간이선발모형을 이용한 용탈 잠재성 평가

DOI QR코드

DOI QR Code

김찬섭;박병준;임양빈;류갑희
Kim, Chan-Sub;Park, Byung-Jun;Ihm, Yang-Bin;Ryu, Gab-Hee

  • 발행 : 2005.12.31

초록

유기인계 농약 5종 및 카바메이트계 농약 4종의 토양에 대한 흡착계수를 구하여 이동성을 구분하고, 흡착계수와 토양 반감기를 이용하여 토양 중에서의 농약의 용탈 잠재성을 평가하고자 하였다. 비이온성 농약인 유기인계 살충제 chlorpyrifos-methyl, diazinon, fenitrothion, isazofos, parathion과 카바메이트계 살충제 fenobucarb(BPMC)와 metolcarb 및 카바메이트게 제초제 dimepiperate와 molinate를 대상농약으로 하였고, 논, 밭, 산림토양 및 제주도 화산회토를 시험토양으로 흡착실험을 수행하였다. 유기탄소기준흡착계수(Koc)에 의한 이동성 분류체계에 의하면 metolcarb, molinate, 및 fenobucarb는 mobile, isazofos를 포함하는 6종 농약은 토양에 따라 moderately mobile 또는 slightly mobile 등급에 속하였다. 그리고 Koc와 토양 중에서의 반감기를 기준으로 지수화한 Groundwater Ubiquity Score(GUS) index 방법과 Koc와 분해상수 및 토양환경조건의 영향을 고려하는 흡착/분해 표준지수 방법을 이용한 용탈잠재성은 metolcarb, fenobucarb 및 molinate는 용탈 가능성이 있고 isazofos, dimepiperate 및 diazinon은 약간의 용탈 가능성이 있는 것으로 나타났으며 fenitrothion, parathion 및 chlorpyrifos-methyl은 용탈 가능성이 매우 낮은 것으로 평가되었다. 흡착/분해 표준지수 방법을 변형하여 Koc값 대신에 Kd값으로 평가하면 유기물 함량이 높은 제주토양에서는 유기물 함량이 낫은 다른 토양에 비하여 농악의 용탈잠재성이 낮은 것으로 나하나 농약의 흡착에 직접적인 영향을 미치는 토양 유기물이 용탈 잠재성을 결정짓는 중요한 요인으로 작용하였다.지하수 EC 농도$(dS\;m^{-1}){\times}7.63$, 양이온 및 음이온의 당량합은 지하수 EC 농도$(dS\;m^{-1}){\times}11.1$의 관계가 있었다. 관비재배지 토양 양분의 과다비율은 pH 56.5%, OM 47.8%, $P_2O_5$ 95.7%, K 78.3%, Ca 87%, Mg 56.5% 및 EC 43.5%로 대부분 심각한 과잉상해를 나타냈으며, 지하수의 $pH(r=0.540^{**})$와 중탄산함량$(r=0.523^{**})$은 토양 pH와 고도의 정의상관을 나타냈으며 토양의 유기물 함량이 녹을수록 관비재배용 지하수의 EC 농도와 ${SO_4}^{2-}$ 함량과는 고도의 정의상관을 나타냈다.판단되며, 유실토양에 의한 농약 유실량 차이는 토양 유실량과 관계되는 것으로 생각되었다. 농약의 강우에 의한 유실은 복잡하게 작용하는 많은 환경적 요인에 의하여 영향을 받지만 정교하게 구성된 환경 시나리오에 의하여 예측 가능할 것으로 판단되었다.고 도라지는 물에 우려 푹 삶았고, 감자, 송이 등은 잘게 썰어 쌀과 함께 밥을 조리하였다. 4. 약선 음식조리방법 약선음식의 재료는 평상시 식생활에 사용되고 있던 식품들의 기능성분과 약이성을 이용하여 만성적인 질병과 급성적인 복통 설사 등에 재료의 전처리를 통해 죽으로 많이 이용하였다. 특히 곡류 등은 갈아 수비하여 이용하였으며, 동물성식품재료를 이용 할 때에는 재료를 만화(중간불)로 오랫동안 끓여 된장이나 향신료 등을 함께 사용해 먹기에 수월하게 조리하였으며, 한약재료인 약초류 등을 이용하였는데 오랫동안 푹 삶아 그물에 곡류 등을 넣어 죽이나 밥으로 조리하였으며 면으로도 조리하였다. 이상과 같이 조선시대 주식류의 종류 및 조리방법에 대한 문헌적 고찰을 분석한 결과로 조선시대로부터 현재까지

키워드

pesticide;adsorption;leaching;half-life;Groundwater Ubiquity Score (GUS)

참고문헌

  1. Jury, W. A., Focht, D. D., and Farmer, W. J. (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16, 422-428 https://doi.org/10.2134/jeq1987.00472425001600040022x
  2. Boesten, J. J. T. I., and van der Linden, A. M. A. (1991) Modeling the influence of sorption and transformation on pesticide leaching and persistence. J. Environ. Qual. 20, 425-435 https://doi.org/10.2134/jeq1991.00472425002000020015x
  3. Jarvis, N. L., Hollis, J. M., Nicholls, P. H., Mayer, T., and Evans, S. P. (1997) MACRO_DB: a decisionsupport tool for assessing pesticide fate and mobility in soils. Environmental Modelling & Software 12, 251-265 https://doi.org/10.1016/S1364-8152(97)00147-3
  4. Weber, J. B. and Miller, C. T. (1989) Organic Chemical Movement over and through soil. 305-334, In Reactions and movement of organic chemicals in soils (ed. Sawhney, B. L. and Brown, K.), SSSA Inc., USA
  5. Hamaker, J. W. and Thompson, J. M. (1972) Adsorption. 49-143, In Organic chemicals in the soil environment (ed. Goring, C. A. I. and Hamaker, J. W.), Marcel Dekker, USA
  6. Boesten, J. J. T. I. (1990) Influence of solid/liquid ratio on the experimental error of sorption coefficients in pesticide/soil systems. Pes tic. Sci. 30, 31-41 https://doi.org/10.1002/ps.2780300105
  7. OECD. (1993) 106. Adsorption/Desorption. In OECD guidelines for testing of chemicals
  8. Bruecher, J. and Bergstroem, L. (1997) Temperature dependence of linuron sorption to three different agricultural soils. J. Environ. Qual. 26, 1327-1335 https://doi.org/10.2134/jeq1997.00472425002600050019x
  9. National Institute of Agricultural Science and Technology (NIAST) (1998) Pesticide database on registration
  10. Page, A. L. (1982) Method of soil analysis. Part 2 - Chemical and microbiological properties. 2nd ed. American Society of Agronomy and Soil Science Society of America. Madison, Wisconsin
  11. Klute, A. (1986) Method of soil analysis. Part 1 -Physical and mineralogical methods. 2nd ed. American Society of Agronomy and Soil Science Society of America. Madison, Wisconsin
  12. Tomlin, C. (ed.). (1997) The pesticide manual (11th ed.). British Crop Protection Council. UK
  13. USA EPA. (1994) Sediment and soil adsorption isotherm. 157-161. In EPA guideline-code of federal regulation 40, part 790 to end
  14. Kim, C. S., Lee, B. M., Ihm, Y. B., and Choi, J. H. (2002) Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics. Korean J. Pestic. Sci. 6(4), 309-319
  15. Bewick, D. W. (1994) The mobility of pesticides in soil-studies to prevent groundwater contamination. 57-86, In H. Boerner (ed.) Pesticides in ground and surface water. Springer-Verlag. Berlin
  16. Roberts, T. R. (1996) Assessing the environmental fate of agrochemicals. J. Environ. Sci. Health B31, 325-335 https://doi.org/10.1080/10934529609376360
  17. Bottani, P., Keizer, J., and Funari, E. (1996) Leaching indices of some major triazine metabolites. Chemosphere 32, 1401-1411 https://doi.org/10.1016/0045-6535(96)00049-5
  18. Johnson, B. R. (1991) A simple adsorption/dilution model for rice herbicides. Bull. Environ. Contam. Toxicol. 47, 244-250 https://doi.org/10.1007/BF01688647
  19. Somasundaram, L., Jayachandran, K., Kruger, E.L., Racke, K. D., Moorman, T. B., Dvorak, T., and Coats, J. R. (1993) Degradation of isazofos in the soil environment. J. Agric. Food Chem. 41, 313-318 https://doi.org/10.1021/jf00026a035
  20. Kim, H. K., Park, I. J., Shim, J. H., and Shu, Y. T. (1996) Soil adsorption of herbicide quizalofop-ethyl. Korean J. Environ. Agric. 15(4), 442-447
  21. Gerstl, Z. and Kliger, L. (1990) Fractionation of the organic matter in soils and sediments and their contribution to the sorption of pesticides. J. Environ. Sci. Health B25, 729-741
  22. Crepeau, K. L., Walker, G., and Winterlin, W. (1991) Use of coal to retard pesticide movement in soil. J. Environ. Sci. Health B26, 529-545
  23. Arienzo, M., Crisanto, T., Sanchez-Martin, M. J., and Sanchez-Camazano, M. (1994) Effect of soil characteristics on adsorption and mobility of (14C) diazinon. J. Agric. Food Chem. 42, 1803-1808 https://doi.org/10.1021/jf00044a044
  24. Sanchez-Martin, M. J. and Sanchez-Camazano, M. (1991) Relationship between the structure of organophosphorus pesticides and adsorption by soil components. Soil Sci. 152, 283-288 https://doi.org/10.1097/00010694-199110000-00006
  25. McCall, P. J., Swann, R. L., Laskowski, D. A., Unger, S. M., Vrona, S. A., and Dishburger, H. J. (1980) Estimation of chemical mobility in soil from liquid chromatographic retention times. Bull. Environ. Contam. Toxicol. 24, 190-1 https://doi.org/10.1007/BF01608096
  26. Gustafson, D. I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 8, 339-357 https://doi.org/10.1897/1552-8618(1989)8[339:GUSASM]2.0.CO;2
  27. Singh, N., P. A. Wahid, M. V. R. Murty, and N. Sethunathan (1990) Sorption-desorption of methyl parathion, fenitrothion and carbofuran in soils. J. Environ. Sci. Health B25, 713-728
  28. von Oepen, B., W. Koerdel, and W. Klein (1991) Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-guideline 106. Chemosphere 22, 285-304 https://doi.org/10.1016/0045-6535(91)90318-8
  29. Pusino, A, Liu, W., and Gessa, C. (1992) Influence of organic matter and its clay complexes on metolachlor adsorption on soil. Pestic. Sci. 36, 283-286 https://doi.org/10.1002/ps.2780360315

피인용 문헌

  1. 1. Leaching Characteristics of the Endocrine Disruptor-suspected Pesticides in Upland Soil vol.17, pp.3, 2013, doi:10.5338/KJEA.2005.24.4.341