# IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

• LEE, SANG CHEOL (Department of Mathematics Education Chonbuk National University) ;
• KIM, SUNAH (Department of Mathematics, Chosun University) ;
• CHUNG, SANG-CHO (Department of Mathematics, Chungnam National University)
• Published : 2005.09.01

#### Abstract

Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P \in Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P^{n}M\neqP^{n+1} for every positive integer n, then \bigcap$$^{$\_{n=1}$(P$^{n}$+ ann$\_{R}$(M))$\in$V(ann$\_{R}$(M)) = Supp(M)$\subseteq\$ N(M).

#### References

1. D. D. Anderson, Some Remarks on Multiplication Ideals, Math. Japon. 25 (1980), 463-469
2. D. D. Anderson, Some Remarks on Multiplication Modules II , Comm. Algebra 28 (2000), no. 5, 2577-2583 https://doi.org/10.1080/00927870008826980
3. D. D. Anderson and Yousef Al-Shaniafi, Multiplication Modules and the Ideal theta(M), Comm. Algebra 30 (2002), no. 7, 3383-3390 https://doi.org/10.1081/AGB-120004493
4. D. D. Anderson, J. Matijevic, and Nichols, The Krull Intersection Theorem II, Pacific J. Math. 66 (1976), no. 1, 15-22 https://doi.org/10.2140/pjm.1976.66.15
5. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779 https://doi.org/10.1080/00927878808823601
6. Z. A. El-Bast and P. F. Smith, Multiplication Modules and Theorems of Mori and Mott, Comm. Algebra 16 (1988), no. 4, 781-796 https://doi.org/10.1080/00927878808823602
7. C. P. Lu, M-radicals of submodules, Math. Japan. 34 (1989), no. 2, 211-219
8. C. P. Lu, Spectra of Modules, Comm. Algebra 23 (1995), no. 10, 3741-3752 https://doi.org/10.1080/00927879508825430
9. Hideyuki Matsumura, Commutative ring theory, Cambridge University Press, 1989
10. P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235 https://doi.org/10.1007/BF01187738

#### Cited by

1. Modules Satisfying the S-Noetherian Property and S-ACCR vol.44, pp.5, 2016, https://doi.org/10.1080/00927872.2015.1027377
2. SOME PROPERTIES OF GR-MULTIPLICATION MODULES vol.20, pp.3, 2012, https://doi.org/10.11568/kjm.2012.20.3.315