DOI QR코드

DOI QR Code

SCALAR EXTENSION OF SCHUR ALGEBRAS

  • Choi, Eun-Mi (DEPARTMENT OF MATHMATHICS, HANNAM UNIVERSITY)
  • Published : 2005.08.01

Abstract

Let K be an algebraic number field. If k is the maximal cyclotomic subextension in K then the Schur K-group S(K) is obtained from the Schur k-group S(k) by scalar extension. In the paper we study projective Schur group PS(K) which is a generalization of Schur group, and prove that a projective Schur K-algebra is obtained by scalar extension of a projective Schur k-algebra where k is the maximal radical extension in K with mild condition.

References

  1. E. Aljadeff and J. Sonn, Projective Schur division algebras are abelian crossed products, J. Algebra 163 (1994), 795-805 https://doi.org/10.1006/jabr.1994.1044
  2. J. R. Bastida, Field extensions and Galois theory, Encyclopedia of Mathematics and its applications 22, Addision-Wesley: Reading, Massachusetts, 1984
  3. G. Karpilovsky, Group representation, Elsevier Science, North Holland, 1 (1992), 3 (1994)
  4. F. Lorenz and H. Opolka, Einfache Algebren und projektive Darstellungen uber Zahlkopern, Math. Z. 162 (1978), 175-182 https://doi.org/10.1007/BF01215073
  5. R. Mollin, The Schur group of a field of characteristic zero, Pacific J. Math. 76 (1978), 471-478 https://doi.org/10.2140/pjm.1978.76.471
  6. I. Reiner, Maximal orders, Academic Press: London, New York, San Francisco, 1975
  7. C. R. Riehm, The linear and quadratic Schur subgroups over the S-integers of a number field, Proc. Amer. Math. Soc. 107 (1989), no. 1, 83-87
  8. E. Weiss, Cohomology of groups, Academic Press, New York, 1969
  9. T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics 397, Springer-Verlag: Berlin, New York, 1974