# PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

• Han, Jun-Cheol (DEPARTMENT OF MATHMATHICS EDUCATIONS, PUSAN NATIONAL UNIVERSITY)
• 발행 : 2005.08.01

#### 초록

Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$;$\sigma\$ ].

#### 참고문헌

1. A. W. Goldie and G. O. Michler, Ore extensions and polycyclic group rings, J. London. Math. Soc. (2) 9 (1974), 337-345
2. D. A. Jordan, Primitive skew Laurent polynomial rings, Glasg. Math. J. 19 (1978), 79-85 https://doi.org/10.1017/S0017089500003414
3. D. A. Jordan, Primitivity in skew Laurent polynomial rings and related rings, Math. Z. 213 (1993), 353-371 https://doi.org/10.1007/BF03025725
4. T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 1991
5. A. Leloy and J. Matczuk, Primitivity of skew polynomial and skew Laurent polynomial rings, Comm. Algebra 24 (1996), no. 7, 2271-2284 https://doi.org/10.1080/00927879608825699
6. A. Moussavi, On the semiprimitivity of skew polynomial rings, Proc. Edinb. Math. Soc. 36 (1993), 169-178

#### 피인용 문헌

1. On primeness of general skew inverse Laurent series ring vol.45, pp.3, 2017, https://doi.org/10.1080/00927872.2016.1172595
2. Some Results On Prime Skew Rings vol.40, pp.2, 2012, https://doi.org/10.1080/00927872.2010.538104