Jang, Lee-Chae;Kim, Tae-Kyun

  • Published : 2005.08.01


Recently, Kim[2,6] has introduced an interesting Euler­Barnes' numbers and polynomials. In this paper, we construct the q-analogue of Euler-Barnes' numbers and polynomials, and investigate their properties.


Euler numbers;Bernoulli numbers;zeta function


  1. T. Kim, p-adic q-integral associated with Changhee-Barnes' q-Bernoulli polyno- mials, Integral Transforms Spec. Funct. 15 (2004)
  2. T. Kim, Kummer Congruence for the Bernoulli numbers of higher order, Appl. Math. Comput. 151 (2004), 589-593
  3. T. Kim, q-Riemann Zeta functions, Int. J. Math. Math. Sci. 2004 (2004), no. 12, 599-605
  4. T. Kim, Analytic continuation of multiple q-Zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), 71-76
  5. T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), 261-267
  6. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299
  7. T. Kim, Some formulae for the q-Bernoulli and Euler polynomials of higher order, J. Math. Anal. Appl. 273 (2002), 236-242
  8. T. Kim, A note on q-multiple Zeta function, J. Physics 34 (2001), 643-646
  9. T. Kim, On p-adic q-Bernoulli numbers, J. Korean Math. Soc. 37 (2000), 27-30
  10. T. Kim, A note on the q-analogue of multiple zeta function, Adv. Stud. Con- temp. Math. 8 (2004), 111-113
  11. T. Kim, A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2004), 161-166
  12. T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), 179-187
  13. T. Kim, An invariant p-adic Integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), 65-69

Cited by

  1. Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials vol.1, pp.3, 2012,
  2. Generating function for q-Eulerian polynomials and their decomposition and applications vol.2013, pp.1, 2013,