DOI QR코드

DOI QR Code

REMARKS ON THE MINIMIZER OF A p-GINZBURG-LANDAU TYPE

  • LEI YUTIAN (DEPARTMENT OF MATHMATHICS, NANJING NORMAL UNIVERSITY)
  • Published : 2005.08.01

Abstract

The author studies the asymptotic behavior of the radial minimizer for a variant of the p-Ginzburg-Landau type functional, in the case of p larger than the dimension, when the parameter tends to zero. The C$^{1, convergence of the radial minimizer is proved. And the estimation of the convergent rate of the minimizer is given.

References

  1. F. Bethuel, H. Brezis, and F. Helein, Ginzburg-Landau Vortices, Birkhauser, 1994
  2. R. M. Herve and M. Herve, Etude qualitative des solutions reelles d'une equation differentielle liee a l'equation de Ginzburg-Landau, Ann. Inst. H. Poincare Anal. Non Lineaire 11 (1994), 427-440 https://doi.org/10.1016/S0294-1449(16)30182-2
  3. L. Lassoued and C. Lefter, On a variant of the Ginzburg-Landau energy, Nonlinear Differ. Equ. Appl. 5 (1998), no. 43, 39-51 https://doi.org/10.1007/s000300050032
  4. Y. Lei, Radial minimizer of a variant of p-Ginzburg-Landau functional, Electron. J. Differential Equations 2003 (2003), no. 35, 1-12
  5. P. Mironescu, On the stability of radial solution of the Ginzburg-Landau equation, J. Funct. Anal. 130 (1995), 334-344 https://doi.org/10.1006/jfan.1995.1073