Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 42 Issue 3
- /
- Pages.521-525
- /
- 2005
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
WHEN IS THE CLASSIFYING SPACE FOR ELLIPTIC FIBRATIONS RANK ONE?
- YAMAGUCHI TOSHIHIRO (FACULTY OF EDUCATION, KOCHI UNIVERSITY)
- Published : 2005.08.01
Abstract
We give a necessary and sufficient condition of a rationally elliptic space X such that the Dold-Lashof classifying space Baut1X for fibrations with the fiber X is rank one. It is only when X has the rational homotopy type of a sphere or the total space of a spherical fibration over a product of spheres.
File
References
- A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305
- Y. Felix, S. Halperin, and J. C. Thomas, Rational homotopy theory, Springer G.T.M. 205 (2001)
- J. B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), 281-289 https://doi.org/10.1016/S0022-4049(96)00037-0
- J. B. Gatsinzi, On the genus of elliptic fibrations, Proc. Amer. Math. Soc. 132 (2004), 597-606
- S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977) 173-199 https://doi.org/10.2307/1997716
- S. B. Smith, Rational type of classifying space for fibrations, Contemp. Math. 274 (2001), 299-307 https://doi.org/10.1090/conm/274/04472
- D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), 269- 332 https://doi.org/10.1007/BF02684341
Cited by
- Rational cohomologies of classifying spaces for homogeneous spaces of small rank vol.5, pp.4, 2016, https://doi.org/10.1007/s40065-016-0156-y
- Sullivan minimal models of classifying spaces for non-formal spaces of small rank vol.196, 2015, https://doi.org/10.1016/j.topol.2015.10.003