• Published : 2005.08.01


In this paper it is proved that for p-hyponormal or log-hyponormal operator A there exist an associated hyponormal operator T, a quasi-affinity X and an injection operator Y such that TX = XA and AY = YT. The operator A and T have the same spectral picture. We apply these results to give brief proofs of some well known spectral properties of p-hyponormal and log­hyponormal operators, amongst them that the spectrum is a con­tinuous function on these classes of operators.


p-hyponormal operator;log-hyponormal operator;spectral picture


  1. C. Apostol, Approximation of Hilbert space operators, Vol II , Research Notes in Mathematics 102, Pitman, 1984
  2. F. F. Bonsall and J. Duncan, Complete normed algebras, Ergebnisse der Math. Band 80, Springer-Verlag, 1973
  3. M. Cho, M. Itoh, and S. Oshiro, Weyl's theorem holds for p-hyponormal operators, Glasg. Math. J. 39 (1997), 217-220
  4. M. Cho, I. H. Jeon, and J. I. Lee, Spectral and structural properties of log-hyponormal operators, Glasg. Math. J. 42 (2000), 345-350
  5. M. Cho, I. S. Hwang, and J. I. Lee, On the spectral properties of log-hyponormal operators, preprint
  6. J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integr. Equat. Oper. Th. 4 (1981), 459-503
  7. S. V. Djordjevic and B. P. Duggal, Weyl's theorems and continuity of spectra in the class of p-hyponormal operators, Studia Math. 143 (2000), 23-32
  8. B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), 338-345
  9. Y. M. Han and S. V. Djordjevic, On a-Weyl's theorem II, preprint
  10. H. G. Heuser, Functional Analysis, John Wiley & Sons Ltd., 1982
  11. I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), 151-157
  12. K. K. Oberai, On the Weyl spectrum (II), Illinois J. Math. 21 (1977), 84-90
  13. K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory 34 (1999), 364-372
  14. D. Xia, Spectral theory of hyponormal operators, Birkhauser, Basel, 1983
  15. R. Yingbin and Y. Zikun, Spectral structure and subdecomposability of p-hypo- normal operators, Proc. Amer. Math. Soc. 128 (1999), 2069-2074
  16. J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176
  17. A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307-315
  18. B. P. Duggal, The Weyl spectrum of p-hyponormal operators, Integral Equations Operator Theory 29 (1997), 197-201