DOI QR코드

DOI QR Code

ON THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS

  • Published : 2005.08.01

Abstract

In [2], Jahangiri studied the harmonic starlike functions of order $\alpha$, and he defined the class T$_{H}$($\alpha$) consisting of functions J = h + $\bar{g}$ where hand g are the analytic and the co-analytic part of the function f, respectively. In this paper, we introduce the class T$_{H}$($\alpha$, $\beta$) of analytic functions and prove various coefficient inequalities, growth and distortion theorems, radius of convexity for the function h, if the function J belongs to the classes T$_{H}$($\alpha$) and T$_{H}$($\alpha$, $\beta$).

References

  1. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math. 9 (1984), 3-25 https://doi.org/10.5186/aasfm.1984.0905
  2. J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), 470-477 https://doi.org/10.1006/jmaa.1999.6377
  3. H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289 https://doi.org/10.1006/jmaa.1997.5882
  4. H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math. 28 (1999), 275-284