DOI QR코드

DOI QR Code

A FAMILY OF QUANTUM MARKOV SEMIGROUPS

Ahn, Sung-Ki;Ko, Chul-Ki;Pyung, In-Soo

  • Published : 2005.10.01

Abstract

For a given gauge invariant state $\omega$ on the CAR algebra A isomorphic with the C$\ast$ -algebra of $2{\times}2$ complex matrices, we construct a family of quantum Markov semigroups on A which leave w invariant. By analyzing their generators, we decompose the algebra A into four eigenspaces of the semigroups and show some properties.

Keywords

quantum Markov semigroups;quasi-free states;CAR algebras

References

  1. G. Alii and G. L. Sewell, New method and structures in the theory of the multimode Dicke laser model, J. Math. Phys. 36 (1995), no. 10, 5598-5626 https://doi.org/10.1063/1.531279
  2. C. Bahn and C. K. Ko, Construction of unbounded Dirichlet forms on standard forms of von Neumann Algebras, J. Korean Math. Soc. 39 (2002), no. 6, 931-951 https://doi.org/10.4134/JKMS.2002.39.6.931
  3. C. Bahn, C. K. Ko, and Y. M. Park, Dirichlet forms and symmetric Markovian semigroups on CCR Algebras with quasi-free states, J. Math. Phys. 44 (2003), 723-753 https://doi.org/10.1063/1.1532770
  4. C. Bahn, C. K. Ko, and Y. M. Park, Construction of symmetric Markovian semigroups on standard forms of $Z_2$-graded von Neumann Algebras, Rev. Math. Phys. 15 (2003), 823-845 https://doi.org/10.1142/S0129055X03001825
  5. C. Bahn and Y. M. Park, Feynman Kac representation and Markov property of semigroups generated by noncommutative elliptic operators, Infin. Dimens Anal. Quantum Probab. Relat. Top. 6 (2003), no. 1, 103-121
  6. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, 2nd Edition, Springer-Verlag, New York-Heidelberg-Berlin, vol I 1987, vol. II 1997
  7. F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), 259-300 https://doi.org/10.1006/jfan.1996.3063
  8. E. B. Davies, Quantum theory of open systems, Academic Press, London-New York-San Francisco, 1976
  9. E. B. Davies and J. M. Lindsay, Superderivations and symmetric Markov semigroups, Comm. Math. Phys. 157 (1993), 359-370 https://doi.org/10.1007/BF02099765
  10. C. K. Ko and Y. M. Park, Construction of a Family of Quantum OrnsteinUhlenbeck Semigroups, J. Math. Phys. 45 (2004) 609-627 https://doi.org/10.1063/1.1641150
  11. A. Luczak, Mixing and asymptotic properties of Markov semigroups on von Neumann algebras, Math. Z. 235 (2000) 615-626 https://doi.org/10.1007/s002090000159
  12. A. W. Majewski and B. Zegarlinski, Quantum stochastic dynamics I: Spin systems on a lattice, Math. Phys. Electron. J. 1 (1995)
  13. A. W. Majewski and B. Zegarlinski, Quantum. stochastic dynamics II, Rev. Math. Phys. 8 (1996), 689-713 https://doi.org/10.1142/S0129055X9600024X
  14. Y. M. Park, Construction of Dirichlet forms and standard forms of von Neumann algebras, Infin. Dimens Anal. Quantum Probab. Relat. Top, 3 (2000), 1-14 https://doi.org/10.1142/S0219025700000029
  15. K. R. Parthasarathy, An introduction to quantum stochastic calculus, Birkhauser, Basel (1992)
  16. I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-456 https://doi.org/10.2307/1969729