DOI QR코드

DOI QR Code

R-HOMOMORPHISMS AND R-HOMOGENEODS MAPS

  • Cho, Yong-Uk (Department of Mathematics Education College of Education Silla University)
  • Published : 2005.11.01

Abstract

In this paper, all rings and all near-rings R are associative, all modules are right R-modules. For a near-ring R, we consider representations of R as R-groups. We start with a study of AGR rings and their properties. Next, for any right R-module M, we define a new concept GM module and investigate the commutative property of faithful GM modules and some characterizations of GM modules. Similarly, for any near-ring R, we introduce an R-group with MR-property and some properties of MR groups.

Keywords

AR rings;AGR rings;R-homogeneous maps;centralizers;GM modules;MR groups

References

  1. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer- Verlag, New York, Heidelberg, Berlin, 1974
  2. P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, 1994
  3. G. F. Birkenmeier and Y. U. Cho, Additive endomorphisms generated by ring endomorphisms, East-West J. Math. 1 (1998), no. 1, 73-84
  4. S. Dhompongsa and J. Sanwong, Rings in which additive mappings are multi- plicative, Studia Sci. Math. Hungar. 22 (1987), 357-359
  5. M. Dugas, J. Hausen, and J. A. Johnson, Rings whose additive endomorphisms are multiplicative, Period. Math. Hungar. 23 (1991), 65-73 https://doi.org/10.1007/BF02260395
  6. M. Dugas, J. Hausen, and J. A. Johnson, Rings whose additive endomorphisms are ring endomorphisms, Bull. Austral. Math. Soc. 45 (1992), 91-103 https://doi.org/10.1017/S0004972700037047
  7. S. Feigelstock, Rings whose additive endomorphisms are multiplicative, Period. Math. Hungar. 19 (1988), 257-260 https://doi.org/10.1007/BF01848834
  8. A. V. Kelarev, On left self distributive rings, Acta Math. Hungar. 71 (1996), 121-122 https://doi.org/10.1007/BF00052200
  9. K. H. Kim and F. W. Roush, Additive endomorphisms of rings, Period. Math. Hungar. 12 (1981), 241-242 https://doi.org/10.1007/BF01849611
  10. C. G. Lyons and J. D. P. Meldrum, Characterizing series for faithful D.G. near- rings, Proc. Amer. Math. Soc. 72 (1978), 221-227 https://doi.org/10.2307/2042780
  11. S. J. Mahmood and J. D. P. Meldrum, D.G. near-rings on the infinite dihe- dral groups, Near-rings and Near-fields (1987), Elsevier Science Publishers B.V (North-Holland), 151-166
  12. C. J. Maxson and K. C. Smith, Simple near-ring centralizers of finite rings, Proc. Amer. Math. Soc. 75 (1979), 8-12
  13. C. J. Maxson and K. C. Smith, The centralizer of a group endomorphism, J. Algebra 57 (1979), 441- 448 https://doi.org/10.1016/0021-8693(79)90231-X
  14. C. J. Maxson and A. B. Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J. Algebra 256 (2002), 66-84 https://doi.org/10.1016/S0021-8693(02)00128-X
  15. J. D. P. Meldrum, Near-rings and their links with groups, Pitman, Boston, London and Melbourne, 1985
  16. J. D. P. Meldrum, Upper faithful D.G. near-rings, Proc. Edinb. Math. Soc. 26 (1983), 361-370 https://doi.org/10.1017/S0013091500004430
  17. G. Pilz, Near-rings, North Holland, Amsterdam, New York and Oxford, 1983
  18. R. P. Sullivan, Research problem, Period. Math. Hungar. 8 (1977), no. 23, 313- 314 https://doi.org/10.1007/BF02018414
  19. Y. Hirano, On rings whose additive endomorphisms are multiplicative, Period. Math. Hungar. 23 (1991), 87-89 https://doi.org/10.1007/BF02260397

Cited by

  1. SOME RESULTS ON IFP NEAR-RINGS vol.31, pp.4, 2009, https://doi.org/10.5831/HMJ.2009.31.4.639