DOI QR코드

DOI QR Code

QUASI-VARIATIONAL AND MINIMAX INEQUALITIES AND COLLECTIVELY FIXED POINT RESULTS FOR S-KKM MAPS

  • O'REGAN DONAL (DEPARTMENT OF MARHEMATICS, NATIONAL UNIVERSITY) ;
  • SHAHZAD NASEER (DEPARTMENT OF MATHEMATICS, KING ABDUL AZIZ UNIVERSITY) ;
  • AGARWAL RAVI P. (DEPARTMENT OF MATHEMATICAL SCIENCES, FLORIDA INSTITURE OF TECHNOLOGY)
  • 발행 : 2005.11.01

초록

The paper presents new collectively fixed point theorems, minimax and quasi-variational inequalities for maps in the S-KKM class.

참고문헌

  1. R. P. Agarwal and D. O'Regan, Collectively fixed point theorems, Nonlinear Anal. Forum 7 (2002), 167-179
  2. R. P. Agarwal and D. O'Regan, Coincidence theory for Uc maps and inequalities, J. Nonlinear Convex Anal. 5 (2004), 265-274
  3. R. P. Agarwal and D. O'Regan, Fixed point theorems for S-KKM maps, Appl. Math. Lett. 16 (2003), 1257-1264 https://doi.org/10.1016/S0893-9659(03)90126-1
  4. C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, Springer Verlag, Berlin, 1994
  5. T. H. Chang, Y. Y. Huang and J. C. Jeng, Fixed point theorems for multifunctions in S-KKM class, Nonlinear Anal. 44 (2001), 1007-1017 https://doi.org/10.1016/S0362-546X(99)00318-1
  6. T. H. Chang, Y. Y. Huang, J. C. Jeng, and K. H. Kuo, On S-KKM property and related topics, J. Math. Anal. Appl. 229 (1999), 212-227 https://doi.org/10.1006/jmaa.1998.6154
  7. T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), 224-235 https://doi.org/10.1006/jmaa.1996.0376
  8. D. O'Regan, N. Shahzad and R. P. Agarwal, Approximation and Furi-Pera type theorems for the S-KKM class, Vietnam J. Math. 32 (2004), 451-465
  9. S. Park, Fixed points, intersection theorems, variational inequalities and equilibrium theorems, Int. J. Math. Math. Sci. 24 (2000), 79-93