We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

Keywords: 3-D display, integral imaging, lenticular sheet.
the resolution and depth of a 3-D image for a given PDRS. In the proposed method, asymmetric elemental images with different ratios of vertical length to horizontal length are used. We obtained an asymmetric elemental image by use of two lenticular sheets of different pitches fabricated under the same F/#. The asymmetric II method is a generalized version of II including both conventional II and 1-D II. We present experimental results to test and verify the performance of our method. In fact, the concept of asymmetric II is not new. A study on the use of an asymmetric lenslet array has been reported [7]. However, the authors used it for an application without considering the relation between resolution and depth.

II. Structure of Asymmetric II

Figure 1 illustrates the proposed asymmetric II method. In our method, two crossed lenticular sheets of different pitches fabricated under the same F/# are used instead of a lenslet array used in a conventional II method. The first lenticular sheet near an image sensor is located vertically, and the second lenticular sheet is located horizontally, as shown in Fig. 1. Suppose that the width of the elemental lens of two crossed lenticular sheets is larger than the length of the image sensor and that the display panel and pitch of the element lens are \(d_1 \) and \(d_2 \), respectively. Here, the condition \(d_2 \geq d_1 \) is satisfied. The rays coming from a 3-D image are recorded in an image sensor through two crossed lenticular sheets. The elemental images are asymmetric due to the use of two different lenticular sheets. These elemental images are displayed in a display panel, and a 3-D image is then generated through two crossed lenticular sheets.

An analysis of asymmetric II according to ray optics is shown in Fig. 2. In ray optics, a lenticular sheet and its pitch are represented as a slit array and slit spacing, respectively. Then, the vertical lenticular sheet near the image sensor, as shown in Fig. 1, is considered as a vertical slit array with slit spacing \(d_1 \). The horizontal lenticular sheet is considered as a horizontal slit array with slit spacing \(d_2 \). We assume that the distance between the vertical slit array and the image sensor is \(z_1 \), and the distance between horizontal slit array and the image sensor is \(z_2 \). To obtain nonoverlapping elemental images from a 3-D object, two slit arrays should be located to satisfy the condition \(d_2/d_1 = z_2/z_1 \). We then obtain asymmetric elemental images by a \(d_2/d_1 \) factor. They are displayed in the display panel to generate a 3-D image through the two crossed lenticular sheets.

In asymmetric II, we can obtain conventional II when \(d_2 \) is the minimum value, \(d_2 = d_1 \). We can consider two slit arrays as a pinhole array because two crossed slit arrays with the same pitch are located at the same position [8]. On the other hand, when \(d_2 \) is the maximum value, a horizontal slit array is presented as a single slit. This case becomes 1-D II. Therefore our asymmetric II method is a generalized version of II including both conventional II and 1-D II.

For our asymmetric II method, we analyze the maximum resolution and maximum depth limit [6]. The analysis is performed separately for the \(x \) and \(y \) axes. The maximum resolutions \(R_x \) and \(R_y \) of any integral image that can be obtained at the plane (\(z = L \)) become

\[
\frac{R_y}{R_x} = \frac{d_2}{d_1}. \tag{1}
\]

From (1), we know that horizontal resolution \(R_x \) and vertical resolution \(R_y \) depend on \(d_1 \) and \(d_2 \), respectively. As \(d_2/d_1 \) increases, \(R_y \) is larger than \(R_x \), as plotted in Fig. 3.

On the other hand, the maximum depth limit of 3-D images \(D_x \) and \(D_y \) that can be displayed in asymmetric II are given by [6]

\[
\frac{D_y}{D_x} = \frac{d_1^2}{d_2^2}. \tag{2}
\]

The maximum depth limit also depends on \(d_1 \) and \(d_2 \). \(D_y \) is
proportional to D_x inversely when d_2/d_1 increases as shown in Fig. 3.

From (1) and (2), we know our method provides control between resolution and depth limit by adjusting the proper d_1 and d_2 values. And the PDRS $R_y^2D_y=R_x^2D_x$ is constant regardless of d_1 and d_2, as shown in Fig. 3.

III. Experiments and Results

We performed computational implementation of our asymmetric II based on an inverse mapping method [9]. Figure 4 shows the computational conditions of the inverse mapping method. The 3-D scene used in the experiment is a ‘+’ pattern whose size is 12 mm. The distance between the 3-D scene and the elemental image plane is 36 mm, and the distance z_1 between vertical slit array and elemental image plane is 3 mm. The pitch of the vertical slit is 1 mm. We analyze the effects on the distance z_2 between horizontal slit array and elemental image plane. We used four different z_2 values; 3, 9, 15, and 18 mm. The pitches of the horizontal slit array then become 1, 3, 5, and 6 mm, respectively. When $z_2=3$ mm, a conventional II method is obtained because two slit arrays are located at the same position. When $z_2=18$ mm, it becomes a 1-D II method because one-to-one mapping is obtained by placing a horizontal slit array at the center of the distance between 3-D scene and the elemental image plane.

We obtain 3:1 and 5:1 asymmetric elemental images when $z_2=9$ and $z_2=15$ mm, respectively. These asymmetric elemental images, whose pixels are 465×465, are shown in Fig. 5. Each elemental image is 31×31 pixels. The 15 column \times 15 row elemental images created computationally are shown in Fig. 5(a). Figure 5(b) shows the 5 column \times 15 row elemental images when $z_2=9$ mm. Figure 5(c) shows the 3 column \times 15 row elemental images when $z_2=15$ mm. And the 1 column \times 15 row elemental images, which are the 1-D elemental images when $z_2=18$ mm, are shown in Fig. 5(d).

Next, we reconstruct a 3-D image computationally by use of the created elemental images. The asymmetric elemental images are represented in the elemental image plane. The ray information from the elemental images is converged through two slit arrays to reconstruct the 3-D image. Figure 6 shows computationally reconstructed images at $z_2=36$ mm. The size of the reconstructed image is 500×500. The reconstructed image when $z_2=3$ mm is shown in Fig. 6(a). Figures 6(b) and 6(c) show the reconstructed images when $z_2=9$ mm and 15 mm, respectively. The reconstructed image of the 1-D II method is shown in Fig. 6(d). To compare the resolution of all
reconstructed images, we present the intensity distribution profiles of reconstructed pixels in a specific vertical line of the reconstructed images, as shown in the bottom of Fig. 6. These profiles indicate how much the reconstructed pixels are similar to the original pixels. We calculated the values of mean-square error between these reconstructed pixels and original pixels. They were 0.34, 0.31, 0.27, and 0 for \(z^2 = 3, 9, 15, \) and 18, respectively. Because a high value of mean-square error indicates a large reconstruction error, we know large asymmetric II provides higher vertical resolution. However, in this case we lose depth effect as expressed in the previous chapter.

IV. Conclusion

As a conventional II technique, our asymmetric II also has a pseudoscopic problem because of opposition between viewing direction and pickup direction. To overcome this problem, several methods have so far been reported [10]-[13]. We think that some of these methods can be adopted usefully in our method to overcome the pseudoscopic problem.

When the proposed method is implemented optically, we believe that the function of depth controlling can be useful for some image processing techniques such as depth extraction [7] and 3-D pattern recognition. Also, we believe that 1-D II without vertical parallax will be one of the good solutions for a large-scale 3-D display system because of the horizontal-only arrangement of multiple display devices.

In conclusion, we proposed an asymmetric II method, which is a generalized version of II including both conventional II and 1-D II, by use of two crossed lenticular sheets with different pitches. The rays coming from a 3-D object are recorded through two crossed lenticular sheets and are displayed again to generate the 3-D images. We presented experimental results to test and verify the performance of our method.

References

Dong-Hak Shin received the BS, MS and PhD degrees in telecommunication and information engineering from Pukyong National University, Pusan, Korea, in 1996, 1998 and 2001. From 2001 to 2004 he was a Senior Researcher with TS-photon established by Toyohashi University of Technology, Japan. He is currently a Research Professor in the 3D Display Research Center (3DRC-ITRC), Kwangwoon University, Korea. His research interests include 3D displays, optical information processing and optical data storage.

Myungjin Cho received the BS and MS degrees in telecommunication and information engineering from Pukyong National University, Busan, Korea, in 2003 and 2005. Currently he is an engineer with the R&D Laboratory, Digital Media Part of Samsung Electronics Co., Ltd., Kyonggido, Korea.

Eun-Soo Kim received the BS degree from Yonsei University, Seoul, Korea, in 1978 and the MS and PhD degrees in electronic engineering from the graduate school of Yonsei University in 1980 and 1984. In 1981, he joined the faculty of Kwangwoon University, where he is presently a professor in the Department of Electronic Engineering. He was a Visiting Research Associate at the California Institute of Technology, Pasadena, from February 1987 to August 1988. He is now the director of the 3D Display Research Center (3DRC-ITRC) and the Head Professor of the National Research Lab of 3D Media. He has also been the Acting President of the Society for 3D Broadcasting & Imaging since 2000. His research interests include 3D imaging & display systems, 3DTV, holographic and stereoscopic image processing, and 3D camera systems.