GENERALIZED T-SPACES AND DUALITY

  • YOON, YEON SOO (Department of Mathematics Hannam University)
  • Received : 2005.01.16
  • Published : 2005.03.25

Abstract

We define and study a concept of $T_A$-space which is closely related to the generalized Gottlieb group. We know that X is a $T_A$-space if and only if there is a map $r:L(A,\;X){\rightarrow}L_0(A,\;X)$ called a $T_A$-structure such that $ri{\sim}1_{L_0(A,\;X)}$. The concepts of $T_{{\Sigma}B}$-spaces are preserved by retraction and product. We also introduce and study a dual concept of $T_A$-space.

Keywords

T-space;co-T-spaces;cyclic maps;cocyclic maps

Acknowledgement

Supported by : Hannam University

References

  1. Pacific J. Math. v.44 no.1 The Evaluation map and EHP sequences Lang, G.E.
  2. Canad. Math. Bull. v.30 Cocyclic maps and coevaluation subgroups Lim, K.L.
  3. Proc. Camb. Phil. Soc. v.57 On homotopy abelian H-spaces Stasheff, J.
  4. J. Indian Math. Soc. v.33 Genralized Gottlieb groups Varadarajan, K.
  5. J. Austral. Math. Soc., (Series A) v.59 T-sapces by the Gottlieb groups and duality Woo, M.H.;Yoon, Y.S.
  6. J. Korean. Math. Soc. v.26 no.1 On n-cyclic maps Yoon, Y.S.
  7. Math. Japonica v.39 no.3 Decomposable reduced tori Yoon, Y.S.
  8. Kyungpook Math. J. v.35 Decomposability of Evaluation Fibrations Yoon, Y.S.
  9. Comm. Korean Math. Soc. v.11 Decomposable right half smash product spaces Yoon, Y.S.;Yu, J.O.
  10. Hopf Spaces Zabrodsky, A.
  11. Can. J. Math. v.39 Decomposable free loop spaces Aguade, J.
  12. Ann. Math. v.78 no.2 Partitions of unity in the theory of fibrations Dold, A.
  13. G-sapces and H-spaces Haslam, H.B.
  14. Proc. Amer. Math. Soc. v.11 Note on the properties of the components of the mapping space $X^{S^q}$ Koh, S.S.
  15. Trans. Amer. Math. Soc. v.90 On spaces having the homotopy type of a CW complex Milnor, J.W.
  16. J. Austral. Math. Soc., (Series A) v.32 On cyclic maps Lim, K.L.