Determination of carbon-14 and tritium in a PWR spent nuclear fuel

PWR 사용후핵연료 중 탄소-14 및 트리튬 정량

  • Kim, Jung Suk (Nuclear Chemistry Research Department, KAERI) ;
  • Park, Soon Dal (Nuclear Chemistry Research Department, KAERI) ;
  • Lee, Chang Hun (Nuclear Chemistry Research Department, KAERI) ;
  • Song, Byong Chul (Nuclear Chemistry Research Department, KAERI) ;
  • Jee, Kwang Yong (Nuclear Chemistry Research Department, KAERI)
  • 김정석 (한국원자력연구소 원자력화학연구부) ;
  • 박순달 (한국원자력연구소 원자력화학연구부) ;
  • 이창헌 (한국원자력연구소 원자력화학연구부) ;
  • 송병철 (한국원자력연구소 원자력화학연구부) ;
  • 지광용 (한국원자력연구소 원자력화학연구부)
  • Received : 2005.06.10
  • Accepted : 2005.06.28
  • Published : 2005.08.25

Abstract

The methods for determining C-14 and tritium contents in the spent nuclear fuel sample were developed. The carbon-14($^{14}CO_2$) released during the dissolution of the spent fuel sample and $CaCO_3$ ($CO_2$ carrier) with 8 M $HNO_3$ at $90^{\circ}C$ was collected in trap containing 1.5 M NaOH. The volatile radioactive iodine evolved when the spent fuel was dissolved, was trapped on to Ag-silicagel (Ag-impregnated silicagel) adsorbent in column which is connected to two NaOH traps. The solutions which contain tritium as HTO after fuel dissolution were decontaminated by deionization with a mixture of cation and anion exchange resins and inorganic ionexchangers. The amount of C-14 in the trap solutions and the HTO concentration in the resulting deionization water were then determined by liquid scintillation counting.

Keywords

carbon-14;tritium;spent nuclear fuel;liquid scintillation counting

References

  1. W. Davis, ORNL/NUREG/TM-12, 1977
  2. J. A. Stone and D. R. Johnson, DP-MS-78-7, 1978
  3. PNL-ALO-491, 'Analysis for Tritium in Gas', 1991
  4. PNL-ALO-479, 'Tritium in Irradiated Cladding Materials', 1989
  5. M. A. H. Franson, 'Standard Methods for the Examination of Water and Wastewater', 15th Ed., Washington, U.S.A, 368-369, 1981
  6. E. W. Baumann and K. W. MacMurdo, DP-MS-77-36, 1977
  7. P. Chastagner, H. L. Daves and W. Bascom Hess, 'New Mass Spectrometers for Hydrogen Isotope Analyses', Analytical Chemistry in Nuclear Technology, Ann Arbor Sci. Pub., U.S.A., 153-160, 1982
  8. M. T. Ganzerli-Valentini, S. Meloni, V. Maxia and U. Pisani, J. Radioanal. Chem., 16, 191-204(1973) https://doi.org/10.1007/BF02517865
  9. Y. Naik, G. A. Rama Rao and V. Venugopal, J. Radioanal. Nucl. Chem., 247(1), 11-14(2001) https://doi.org/10.1023/A:1006786208564
  10. W. J. Maeck, M. E. Kussy and J. E. Rein, Anal. Chem., 35(13), 2086-2090(1963) https://doi.org/10.1021/ac60206a031
  11. KAERI/RR-1832/97, '핵연료주기 폐기물재활용기술 개발-배기체 처리기술개발', 과학기술부, 1997
  12. D. L. Moir, A. W. Tarr, J. D. Chen, D. P. Archambault, B. Payne and T. A. Shewchuk, Radiochirn. Acta., 80, 37-42(1998)
  13. H. A. C. McKay, IAEA-SM-245/8, 1980
  14. T. Hiyama, S. Sugaya, J. Yamamoto and K. Kamimura, J. Nucl. Mater., 218, 1-7(1994) https://doi.org/10.1016/0022-3115(94)00374-2
  15. B. G Motes, S. J. Fernandez and J. W. Tkachyk, NUREGICR-1599, 1983
  16. F. R. Campbell, R. DesHaies and N. J. F. Notley, AECL-4912, 1974
  17. D. R. Johnson and J. A. Stone, DP-MS-77-77, 1978
  18. ASTM D 4107-98(Reapproved 2002), 'Standard Test Method for Tritium in Drinking Water', Annual Book of ASTM Standards, Vol. 11.01, 2003
  19. S. P. Mishra, S. S. Dubey and D. Tiwari, J. Radioanal. Nucl. Chem., 261(2), 457-463(2004) https://doi.org/10.1023/B:JRNC.0000034885.26277.bd
  20. IAEA-209, 'Removal, Storage and Disposal of Gaseous Radionuclides from Airborne Effluents', IAEA, Vienna, 1978
  21. N. S. Huskisson and P. F. V. Ward, Int. J. Appl. Radiat. Isot., 29, 729-734(1978) https://doi.org/10.1016/0020-708X(78)90154-0
  22. JAERI-M-91-010, '사용 후 핵연료 용해시험', 일본원자력연구소, 1991