A theoretical study of the adsorption characteristics of gaseous molecules on the carbonaceous adsorbent

탄소질 흡착제에 가스 상 분자의 흡착 특성에 대한 이론적 연구

  • Received : 2005.07.25
  • Accepted : 2005.07.29
  • Published : 2005.08.25


The adsorption characteristics of gaseous molecules on the carbonaceous adsorbent have been investigated at various temperature and pressure with different pore sizes using Grand Canonical Monte Carlo (GCMC) simulation method. The geometrical parameters and spectroscopic properties of adsorbates have been computed using density functional theory (DFT). At higher temperatures is the adsorption amount of adsorbates is decreased due to their vaporization. Considering the pore size effect, the adsorption characteristic depends on the adsorbate size, polarity and interaction between adsorbates, etc. At all cases employed in this study, the adsorption amount of adsorbates on the carbonaceous adsorbent is increased in the order $NH_3$ < $H_2S$ < $CH_3SH$, and this result is qualitatively in good agreement with the experimental observation.


  1. C. Nguyen and D. D. Do, 'A new method for the characterization of porous materials', Langmuir. 15(10), 3608-3615(1999) https://doi.org/10.1021/la980732t
  2. C. L. McCallum, T. J. Bandosz, S. C. McGrother, E. A. Muller and K. E. Gubbins, 'A molecular model for adsorption of water on activated carbon, Comparison of simulation and Experiment', Langmuir. 15, 533-544(1999) https://doi.org/10.1021/la9805950
  3. J. F. Espinal, F. Mondragon and T. N. Truong, 'Mechanisms for methane and ethane formation in the reaction of hydrogen with carbonaceous materials', Carbon, 43, 1820-1827(2005) https://doi.org/10.1016/j.carbon.2005.02.010
  4. R. O. Jones and O. Gunnarson, Rev. Mod. Phys., 61, 689(1989) https://doi.org/10.1103/RevModPhys.61.689
  5. G. Herzberg, 'Electronic spectra of polyatomic molecules', Van Nostrand Reinhold Company (1966)
  6. F. Stoeckli, A. Guillot, A. M. Slasli and D. Hugi-Cleary, 'The comparison of experimental and calculated pore size distributions of activated carbons', Carbon, 40, 383-388(2002) https://doi.org/10.1016/S0008-6223(01)00115-4
  7. W. Adamson, John Wiley & Sons, Physical Chemistry of Surfaces, 4th edition (1982)
  8. T. Suzuki, R. Kobori and K. Kaneko, 'Grand canonical Monte Carlo simulation-assisted pore-width determination of molecular sieve carbons by use of ambient temperature $N_2$ adsorption', Carbon, 38, 623-641 (2000) https://doi.org/10.1016/S0008-6223(99)00273-0
  9. D. D. Do and H. D. Do, 'GCMC-surface area of carbonaceous materials with $N_2$ and Ar adsorption as an alternative to the classical BET method', Carbon, 43, 2112-2121 (2005) https://doi.org/10.1016/j.carbon.2005.03.042
  10. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, J. Comput. Chem., 4, 187-217(1983) https://doi.org/10.1002/jcc.540040211
  11. A. N. Sakoda, Oka and M. Suzuki, 'Adsorption of methane onto activated carbon by a graphite clystal aggregate model', Fundamentals of Adsorption, 781-788(1996)
  12. James P. Olivier, 'Improving the models used for calculating the size distribution of micropore volume of activated carbon from adsorption data', Carbon, 36, 1469-1472(1998) https://doi.org/10.1016/S0008-6223(98)00139-0
  13. C. R. Kim, C. H. Shin, M. W. Seo, J. Y. Kim, Y. H. Kim and K. H. Lee, 'Adsorption characteristics of ammonia, hydrogen sulfide and methylmercaptan on activated carbons with different pH', Journal of the Korea Society of Tobacco Science, 19(1), 46-50(1997)
  14. M. J. Sanchez-Montero, C. Herdes, F. Salvador and L. F. Vega, 'New insights into absorption isotherm interpretation by a coupled molecular simulation-experimental procedure', Applied Suface Science, in press (2005)
  15. P. I. Ravikovitch, A. Vishnyakov, R. Russo and A. V. Neimark, 'Unified approach to pore size characterization of microporous carbonaceous materials from $N_2$, Ar, and $CO_2$ adsorption isotherms', Langmuir. 16(5), 2311-2320(2000) https://doi.org/10.1021/la9817361
  16. Tomonori Ohba, Takaomi Suzuki and Katsumi Kaneko, 'Relationship between DR-plot and micrdpore width distribution form GCMC simulation', Carbon, 38, 1879-1902(2000) https://doi.org/10.1016/S0008-6223(00)00115-9
  17. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, 'UFF, A full periodic table force field for molecular mechanics and molecular dynamics simulations', J. Am. Chem. Soc., 114, 10024-10035( 1992) https://doi.org/10.1021/ja00051a040
  18. S. L. Mayo, B. O. Olafson and W. A. Goddard III, 'Dreiding, A generic force field for morecluar simulations', J. Phys. Chem., 94, 8897-8909(1990) https://doi.org/10.1021/j100389a010
  19. Norihiko Setoyama, Takaomi Suzuki and Katsumi Kaneko, 'Simulation study on the relationship between a high resolution ${\alpha}_5$-plotand the pore size distribution for activated carbon', Carbon, 36, 1459-1467(1998) https://doi.org/10.1016/S0008-6223(98)00138-9
  20. Gerald H. Lushington, Cary F. Chabalowski, 'Ab initio simulation of physisorption: $N_2$ on pregraphitic clusters', Journal of Molecular Structure (Themchem), 554, 221-235(2001)
  21. E. A. Muller, L. F. Rull, L. F. Vega and K. E. Gubbins, 'Adsorption of water on activated carbons, A molecular simulation study', J. Phys. Chem., 100, 1189-1196(1996) https://doi.org/10.1021/jp9519934
  22. Alejandro Montoya, Fanor Mondragon, Thanh N. Truong, '$CO_2$ adsorption on carbonaceous surfaces: a combined experimental and theoretical study', Carbon, 41, 29-39(2003) https://doi.org/10.1016/S0008-6223(02)00270-1
  23. Svetlana Bashkova, Andrey Bagreev, Teresa J. Bandosz, 'Catalytic properties of activated carbon surface in the process of adsorption/oxidation of methyl mercaptan', Catalysis Today, 99, 323-328 (2005) https://doi.org/10.1016/j.cattod.2004.09.028
  24. C. Bertoncini, J. Raffaelli, L. Fassino, H. S. Odetti and E. J. Bottani, 'Phenol adsorption on porous and nonporous carbon', Carbon, 41, 1101-1111(2003) https://doi.org/10.1016/S0008-6223(02)00270-1