Characterization of Polymer Blends of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) for DMFC

직접메탄올 연료전지용 Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) 블렌드 막의 특성 연구

  • Cheon, Hun Sang (Department of Chemical Engineering, Hanbat National University) ;
  • Lee, Choong Gon (Department of Chemical Engineering, Hanbat National University) ;
  • Hong, Seong Uk (Department of Chemical Engineering, Hanbat National University)
  • 천훈상 (한밭대학교 화학공학과) ;
  • 이충곤 (한밭대학교 화학공학과) ;
  • 홍성욱 (한밭대학교 화학공학과)
  • Received : 2004.09.20
  • Accepted : 2004.11.09
  • Published : 2005.02.10

Abstract

Sulfonated poly(ether ether ketone) (SPEEK) was blended with poly(ether sulfone) (PES) at various compositions. To investigate the possibility of using the blend membranes as polymer electrolyte membranes for direct methanol fuel cell, the blend membranes were characterized in terms of methanol permeability, proton conductivity, ion exchange capacity, and water content. Both proton conductivity and methanol permeability of SPEEK were relatively high. As the amount of PES increased, methanol permeability decreased more rapidly compared to proton conductivity. The experimental results indicated that the blend membrane with 40 wt% PES was the best choice in terms of the ratio of proton conductivity to methanol permeability.

Acknowledgement

Supported by : 한밭대학교

References

  1. K. Kordesch and G. Simader, Fuel Cells and their Applications, VCH, Weinheim (1996)
  2. J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, England (2000)
  3. Y. M. Lee and H. B. Park, Membr. J., 10, 103 (2000)
  4. S. Koter, P. Pitrowski, and J. Kerres, J. Membr. Sci., 153, 83 (1999) https://doi.org/10.1016/S0376-7388(98)00242-7
  5. J. Cruickshank and K. Scott, J. Power Source, 70, 40 (1998) https://doi.org/10.1016/S0378-7753(97)02626-8
  6. A. Heinzel and v. M. Barragan, J. Power Source, 84, 70 (1999) https://doi.org/10.1016/S0378-7753(99)00302-X
  7. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, J. Membr. Sci., 173, 17 (2000) https://doi.org/10.1016/S0376-7388(00)00345-8
  8. F. G. Wihelm, I. G. MPunt, N. F. A. van der Vegt, H. Strathnamn, and M. Wessling, J. Membr. Sci., 199, 167 (2002) https://doi.org/10.1016/S0376-7388(01)00695-0
  9. C. Manea and M. Mulder, J. Membr. Sci., 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  10. H. S. Cheon, M. Oh, and S. U. Hong, Membr. J., 13, 47 (2003)
  11. W. Cui, J. Kerres, and G. Eigenberger, Sep. Puri. Tech., 14, 145 (1998) https://doi.org/10.1016/S1383-5866(98)00069-0
  12. K. D. Kreuer, Solid State Ionics, 97, I (1997) https://doi.org/10.1016/S0167-2738(97)00082-9
  13. Q. H. Guo, P. N. Pintauro, H. Tang, and S. O'connor, J. Membr. Sci., 154, 175 (1999) https://doi.org/10.1016/S0376-7388(98)00282-8
  14. N. Cornet, G. Beandoing, and G. Gebel, Separ. Puri. Tech., 22, 681 (2001) https://doi.org/10.1016/S1383-5866(00)00184-2
  15. T. Lehtinen, G. Sundholrn, and F. Sundholm, J. Appl. Electrochem., 29, 677 (1999)
  16. F. Helmer and M. Metzmann, European Patent 0574 791 A2 ( 1993)
  17. K. Scott, W. M. Taama, and P. Argynopoulos, J. Membr. Sci., 171, 119 (2000) https://doi.org/10.1016/S0376-7388(99)00382-8
  18. B. R. Pivovar, Y. X. Wang, and E. L. Cussler, J. Membr. Sci., 154, 155 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6