The assessment of anesthetic depth by quantitative electroencephalography in intravenous anesthesia by intermittent bolus injection

간헐적 일시 정맥주사 마취에서 정량적 뇌파분석을 이용한 마취 심도의 평가

  • Lee, Soo-Han (College of Veterinary Medicine, Konkuk University) ;
  • Bae, Chun-Sik (College of Veterinary Medicine, Biotechnology Research Institute, Chonnam National University) ;
  • Noh, Gyu-Jeong (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Bae, Kyun-Seop (Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jin-Young (College of Veterinary Medicine, Konkuk University) ;
  • Chung, Byung-Hyun (College of Veterinary Medicine, Konkuk University)
  • 이수한 (건국대학교 수의과대학) ;
  • 배춘식 (전남대학교 수의과대학 및 생물공학연구소) ;
  • 노규정 (울산의대 서울아산병원 마취통증의학교실) ;
  • 배균섭 (울산의대 서울아산병원 임상약리학교실) ;
  • 김진영 (건국대학교 수의과대학) ;
  • 정병현 (건국대학교 수의과대학)
  • Accepted : 2005.03.07
  • Published : 2005.03.25

Abstract

To assess anesthetic depth using quantitative electroencephalography (q-EEG), we recorded processed EEG (raw EEG) till 100 minutes in beagle dogs anesthetized for 60 minutes with tiletamine/zolazepam (n=5, TZ group), xylazine/ketamine (n=5, XK group) and propofol (n=5, PI group) by intermittent bolus injection. Raw EEG was converted into 95% spectral edge frequency (SEF) and median frequency (MF) through fast fourier transformation (FFT) method. 95% SEF value of TZ group was significantly higher (p<0.05) than the XK group from 10 minutes to 100 minutes. 95% SEF value of PI group was significantly higher (p<0.05) than the XK group from 10 minutes to 40 minutes, and significantly low (p<0.05) than XK group at 90 and 100 minutes. MF was significantly higher (p<0.05) in TZ group from 60 minutes to 100 minutes. Based on these results, using dissociative agent with ${\alpha}_2$-adrenergic agent is more potent in CNS depressed than using dissociative agent alone, and low doses of propofol has a disinhibitory effect on CNS.

Keywords

References

  1. Church J, Lodge D. N-methyl-d-aspartate(NMDA) antagonism is central to the actions of ketamine and other phencyclidine receptor ligands. In: Domino EG. (ed.), Status of ketamine in anesthesiology. p. 501. NPP books, Ann Arbor, 1990
  2. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurons. Br J Pharma 1991, 104, 619-628 https://doi.org/10.1111/j.1476-5381.1991.tb12479.x
  3. Plumb DC. Veterinary Drug Handbook. 4th ed. pp. 736-737, Iowa State Press, Iowa, 2002
  4. White PF. Ketamine update: its clinical uses in anesthesia. Semin Anesth 1988, 7, 113-126
  5. Duffy FH, Hughes JR, Miranda P, Bernard P, Cook P. Status of quantitative EEG (QEEG) in clinical practice, Clin Electroencephalogr 1994, 25, VI-XXII
  6. Martinez EA. Anesthetic agents. In: Boothe DM. (ed.), Small Animal Clinical Pharmacology and Therapeutics. p. 427. Saunders, Philadelphia, 2001
  7. Vachon P, Dupras J, Prout R, Blais D. EEG Recordings in anesthetized rabbits: Comparison of ketamine-midazolam and telazol with or without xylazine. Contemp Top Lab Anim Sci 1999, 38, 57-61
  8. Redding RW. Canine Electroencephalography. In: Hoerlin BF. (ed.), Canine Neurology. pp. 113-115. Saunders, Philadelphia, 1971
  9. Baraka A, Aoud M. Is propofol anticonvulsant or proconvulsant? Can J Anaesth 1997, 44, 1027-1029
  10. Doi M, Gajraj RJ, Mantzaridis H, Kenny GN. Relationship between calculated blood concentration of propofol and electrophysiological variables during emergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked potential index. Br J Anaesth 1997, 78, 180-184 https://doi.org/10.1093/bja/78.2.180
  11. Greene SA, Benson GJ, Tranquilli WJ, Grimm KA. Relationship of canine bispectral index to multiples of sevoflurane minimal alveolar concentration, using patch or subdermal electrodes. Comp Med 2002, 52, 424-428
  12. Mysinger PW, Redding RW, Vaughan JT, Purohit RC, Holladay JA. Electroencephalographic patterns of clinically normal, sedated, and tranquilized newborn foals and adult horses. Am J Vet Res 1985, 46, 36-41
  13. Bergamasco L, Accatino A, Priano L, Neiger-Aeschbacher G, Cizinauskas S, Jaggy A. Quantitative electroencephalographic findings in beagles anaesthetized with propofol. Vet J 2003, 166, 58-66 https://doi.org/10.1016/S1090-0233(02)00254-X
  14. Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman SB, Evans AC. Brain mechanisms of propofol-induced loss of consciousness in humans: a position emission tomographic study. J Neuro Sci 1999, 19, 5506-5513
  15. Kearse LA. Jr., Roscow C, Zaslavsky A, Connors P, Dershwitz M, Denman W. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology 1988, 88, 25-34
  16. Schwender D, Daunderer M, Mulzer S, Klasing S, Finsterer U, Peter K. Spectral edge frequency of the electroencephalogram to monitor 'depth' of anaesthesia with isoflurane or propofol. Br J Anaesth 1996, 77, 179-184 https://doi.org/10.1093/bja/77.2.179
  17. Steiss JE. A survey of current techniques in veterinary electrodiagnosis: EEG, spinal evoked and brain stem auditory evoked potential recording. Vet Res Commun 1988, 12, 281-288 https://doi.org/10.1007/BF00343246
  18. Tung A, Bluhm B, Mendelson WB. Sleep inducing effects of propofol microinjection into the medial preoptic area are blocked by flumazenil. Brain Res 2001, 908, 155-160 https://doi.org/10.1016/S0006-8993(01)02629-4
  19. Liu J, Singh H, White PF. Electroencephalogram bispectral analysis predicts the depth of midazolaminduced sedation. Anesthesiology 1996, 84, 64-69 https://doi.org/10.1097/00000542-199601000-00007
  20. Nieuwenhuijs D, Coleman EL, Douglas NJ, Drummond GB, Dahan A. Bispectral index values and spectral edge frequency at different stages of physiologic sleep. Anesth Analg 2002, 94, 125-129 https://doi.org/10.1097/00000539-200201000-00024
  21. Seifert HA, Blouin RT, Conard PF, Gross JB. Sedative doses of propofol increase beta activity of the processed electroencephalogram. Anesth Analg 1993, 76, 976-978
  22. Daube JR, Harper CM, Litchy WJ, Sharbrough FW. Intraoperative monitoring. In: Daly DD, Pedley TA. (eds.), Current Practice of Clinical Electroencephalography. pp. 739-779, Raven Press, New York, 1990
  23. Purohit RC, Mysinger PW, Redding RW. Effects of xylazine and ketamine hydrochloride on the electroencephalogram and the electrocardiogram in the horse. Am J Vet Res 1981, 42, 615-619
  24. Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked response in human. Anesthesiology 1973, 38, 564-582 https://doi.org/10.1097/00000542-197306000-00011
  25. Itamoto K, Taura Y, Wada N, Takuma T, Une S, Nakaichi M, Hikasa Y. Quantitative electroencephalography of medetomidine, medetomidine-midazolam and medetomidine-midazolam-butorphanol in dogs. J Vet Med 2002, 49, 169-172 https://doi.org/10.1046/j.1439-0450.2002.00546.x