The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H. (Department of Animal Science, National Taiwan University) ;
  • Wang, Y.C. (Department of Animal Science, National Taiwan University) ;
  • Kuo, C.F. (Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University) ;
  • Cheng, W.M. (Department of Animal Science, National Taiwan University) ;
  • Shen, T.F. (Department of Animal Science, National Taiwan University) ;
  • Ding, Shih-Torng (Department of Animal Science, National Taiwan University)
  • Received : 2004.11.04
  • Accepted : 2005.03.21
  • Published : 2005.10.01


To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.


Acyl-CoA Oxidase;Adipocyte Determination and Differentiation-dependent Factor 1;Docosahexaenoic acid;Fatty Acid;Pig


Supported by : National Science Council


  1. Bell, A. R., R. Savory, N. J. Horley, A. I. Choudhury, M. Dickins, T. J. Gray, A. M. Salter and D. R. Bell. 1998. Molecular basis of non-responsiveness to peroxisome proliferators: the guineapig PPARalpha is functional and mediates peroxisome proliferator- induced hypolipidaemia. Biochem. J. 332:689-693.
  2. Ding, S. T. and H. J. Mersmann. 2001. Fatty acids modulate porcine adipocyte differentiation and transcripts for transcription factors and adipocyte-characteristic proteins. J. Nutr. Biochem. 12:101-108.
  3. Eder, K., H. Nonn and H. Kluge. 2001. The fatty acid composition of lipids from muscle and adipose tissues of pigs fed various oil mixtures differing in their ratio between oleic acid and linoleic acid. Eur. J. Lipid Sci. Technol. 103:668-676.
  4. Folch, J., M. Lees, G. H. Sloane and S. Stanley. 1957. A simple method for isolation and purification of total lipids for animal tissues. J. Biol. Chem. 226:497-509.
  5. Hannah, V. C., J. Ou, A. Luong, J. L. Goldstein and M. S. Brown. 2001. Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-292 cells. J. Biol. Chem. 276:4365-4372.
  6. Kliewer, S. A., S. S. Sundseth, S. A. Jones, P. J. Brown, G. B. Wisely, C. S. Koble, P. Devchand, W. Wahli, T. M. Willson, J. M. Lenhard and J. M. Lehmann. 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA. 94:4318-4323.
  7. SAS User’s Guide: Statistics. 2001. SAS Institute, Inc., Raleigh. NC.
  8. Xu, J., M. Teran-Garcia, J. H. Park, M. T. Nakamura and S. D. Clarke. 2001. Polyunsaturated fatty acids suppress hepatic sterol regulatory element- binding protein-1 expression by accelerating transcript decay. J. Biol. Chem. 276:9800-9807.
  9. Ying, C., M. A. Chan, W. T. K. Cheng and W. F. Hong. 2003. Coexpression and sequence determination of estrogen receptor variant messenger RNAs in swine uterus. Asian-Aust. J. Anim. Sci. 16:1716-1721.
  10. Brown, M. S. and J. L. Goldstein. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331-40.
  11. Hsu, J. M. and S. T. Ding. 2003. Effect of polyunsaturated fatty acids on the expression of transcription factor ADD1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocytes. Br. J. Nutr. 90:507-513.
  12. Ding, S. T., R. L. McNeel and H. J. Mersmann. 1999. Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo. Comp. Biochem. Physiol. B 123:307-318.
  13. Ding, S. T., M. Wang and H. J. Mersmann. 2003b. Effect of unsaturated fatty acids on porcine adipocyte differentiation. Nutr. Res. 23:1059-1069.
  14. Kim, H. J., M. Takahashi and O. Ezaki. 1999. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J. Biol. Chem. 274:25892-25898.
  15. Mason, J. V. and R. F. Sewell. 1967. Influence of diet on the fatty acid composition of swine tissues. J. Anim. Sci. 26:1342-1347.
  16. Sink, J. D., J. I. Watkins, J. H. Ziegler and R. C. Miller. 1964. Analysis of fat deposition in swine by gas-liquid chromatography. J. Anim. Sci. 23:121-125.
  17. Smith, D. R., D. A. Knabe, H. R. Cross and S. B. Smith. 1996. A diet containing myristoleic plus palmitoleic acids elevates plasma cholesterol in young growing swine. Lipids 31:849-858.
  18. Ding, S. T., R. L. McNeel and H. J. Mersmann. 2002. Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids. In vitro Cell. Dev. Biol. Ani. 38:352-357.
  19. Yahagi, N., H. Shimano, A. H. Hasty, M. Amemiya-Kudo, H. Okazaki, Y. Tamura, Y. Iizuka, F. Shionoiri, K. Ohashi, J. Osuga, K. Harada, T. Gotoda, R. Nagai, S. Ishibashi and N. Yamada. 1999. A crucial role of sterol regulatory elementbinding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274:35840-35844.
  20. Horton, J. D., H. Shimano, R. L. Hamilton, M. S. Brown and J. L. Goldstein. 1999. Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J. Clin. Invest. 103:1067-1076.
  21. Hsu, J. M., P. H. Wang, B. H. Liu and S. T. Ding. 2004. The effect of dietary docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J. Anim. Sci. 82:683-689.
  22. Gondret, F., P. Ferre and I. Dugail. 2001. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J. Lipid Res. 42:106-113.
  23. Kim, J. B. and B. M. Spiegelman. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10:1096-1107.
  24. Xu, J., M. T. Nakamura, H. P. Cho and S. D. Clarke. 1999. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem. 274:23577-23583.
  25. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162:156-159.
  26. Kim, J. B., H. M. Wright, M. Wright and B. M. Spiegelman. 1998. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA. 95:4333-4337.
  27. Ding, S. T., A. Lapillonne, W. C. Heird and H. J. Mersmann. 2003a. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs. J. Anim. Sci. 81:423-432.
  28. Park, Y. and W. S. Harris. 2003. Omega-3 fatty acid supplementation accelerates chyromicron triglyceride clearance. J. Lipid Res. 44:455-463.
  29. Yen, C. F., Y. N. Jiang, T. F. Shen, I. M. Wong, C. C. Chen, K. C. Chen, W. C. Chang, Y. K. Tsao and S. T. Ding. 2004. Cloning and expression of the genes associated with lipid metabolism in Tsaiya ducks. Poult. Sci. 84:67-74.
  30. Grigorios, K., B. Olivier, L. Fabienne, K. Eric, P. Mai, G. P. Malcolm and W. Walter. 1997. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11:779-791.
  31. McNeel, R. L. and H. J. Mersmann. 1999. Distribution and quantification of beta 1-, beta 2-, and beta 3-adrenergic receptor subtype transcripts in porcine tissues. J. Anim. Sci. 77:611-621.
  32. Desvergne, B. and W. Wahli. 1999. Peroxisome proliferatoractivated receptors: nuclear control of metabolism. Endocr. Rev. 20:649-688.
  33. Ding, S. T., A. P. Schinckel, T. E. Weber and H. J. Mersmann. 2000. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. J. Anim. Sci. 78:2127-2134.
  34. Ding, S. T., B. H. Liu and Y. H. Ko. 2004. Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs. J. Anim. Sci. 82:3162-3174.
  35. Yang, C. C., H. S. Chang, C. J. Lin, C. C. Hsu, J. I. Cheng, L. Hwu and W. T. K. Cheng. 2004. Cock spermatozoa serve as the gene vector for generation of transgenic chicken (Gallus gallus). Asian-Aust. J. Anim. Sci. 17:885-891.
  36. Wang, P. H., Y. H. Ko, B. H. Liu, H. M. Peng, M. Y. Lee, C. Y. Chen, Y. C. Li and S. T. Ding. 2004. The expression of porcine adiponectin and stearoyl coenzyme A desaturase genes in differentiating adipocytes. Asian-Aust. J. Anim. Sci. 17:588-593.

Cited by

  1. Effects of soyabean meal- or whey-based diets on lipid metabolism in weaned piglets vol.99, pp.1, 2014,
  2. Docosahexaenoic acid increases accumulation of adipocyte triacylglycerol through up-regulation of lipogenic gene expression in pigs vol.16, pp.1, 2017,
  3. Abundantly expressed genes in pig adipose tissue: An expressed sequence tag approach1 vol.84, pp.10, 2006,
  4. Serum Amyloid A Protein Regulates the Expression of Porcine Genes Related to Lipid Metabolism vol.138, pp.4, 2008,
  5. Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β2-AR pp.1559-1182, 2018,