The distribution characteristics of trace elements of fine ambient particulate in Korea

  • Lim, Jong-Myoung (Chungnam National University, Department of Environmental Engineering) ;
  • Lee, Jin-Hong (Chungnam National University, Department of Environmental Engineering) ;
  • Kim, Ki-Hyun (Sejong University, Geoinformation Sciences)
  • Received : 2005.03.18
  • Accepted : 2005.05.19
  • Published : 2005.06.25

Abstract

In this study, instrumental neutron activation analysis was used to measure the concentrations of about 30 trace elements in airborne particulate (PM2.5) samples at urban area of Daejeon city located in the southwestern region of Korea. An inspection of the measurement data indicates that the distribution patterns of trace elements could clearly distinguish the elements with their concentrations ranging over five orders of magnitude. The mean values for Lu and Dy were found to be the lowest at values of 0.01 and $0.04ng/m^3$, while those for K and Fe showed the highest value of 671 and $653ng/m^3$, respectively. The results of correlation analysis showed that PM2.5 concentrations can exhibit much more enhanced correlations with the elements of earth crustal components. The results of factor analysis further indicated that there are no more than six factors with statistical significance, which may exert dominant roles in regulating the elemental concentration levels in the study area. Enrichment factor analysis supports explicit interpretation of results found by this factor analysis.

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. S. Landsberger, 'Trace Element Determination of Airborne Particles by Neutron Activation Analysis, in Elemental Analysis of Airborne Particles', Gordon and Breach, Malaysia, 1999
  2. I. Salma and E. Zemplen-Papp, Nucl. Instrum. Meth. in Phys. Reser., A435, 462-474(1999)
  3. W. Tian, 'Reactor Neutron Activation Analysis of Airborne Particulate Matter', NAHRES-53, IAEA, Vienna, 2000
  4. D. P. Lamoree and J. R. Turner, J. Air Waste Management Association, 49, 85-94(1999) https://doi.org/10.1080/10473289.1999.10463902
  5. Y. Wu, J. Hao, L. Fu, J. Hu, Z. Wang and U. Tang, The Science of the Total Environment, 317, 159-172(2003) https://doi.org/10.1016/S0048-9697(03)00331-0
  6. S. Loranger, M. Teterault, G. Kennedy and J. Zayed, Environmental Pollution, 92, 203-211(1996) https://doi.org/10.1016/0269-7491(95)00082-8
  7. X. Li, C. Poon, and P. S. Liu, Applied Geochemistry, 16, 1361-1368(2001) https://doi.org/10.1016/S0883-2927(01)00045-2
  8. T. A. Pakkanen, V. M. Kerminen, K. Loukkola, R. E. Hillamo, P. Aarnio, T. Koskentalo, and W. Maenhaut, Atmospheric Environment, 37, 1673-1690(2003) https://doi.org/10.1016/S1352-2310(03)00011-6
  9. P. Fariseo, M. Speziali, C. Herborg, and E. Orvini, Microchemical Journal, 79, 43-47(2005) https://doi.org/10.1016/j.microc.2004.05.005
  10. Y. S. Chung, E. S. Jung, and S. Y. Cho, J. Radioanal. Nucl. Chem., 217, 71-77(1997) https://doi.org/10.1007/BF02055351
  11. Y. S. Chung, J. H. Moon, K. W. Park, S. H. Kim, J. H. Lee, and K. Y. Lee, J. Radioanal. Nucl. Chem., 254, 117-128(2002) https://doi.org/10.1023/A:1020806017775
  12. J. Tolgyessy and E. H. Klehr, 'Nuclear Environmental Chemical Analysis, Ellis Horwood Series in Analytical Chemistry', John Wiley and Sons, New York, 1987
  13. G. Erdtmann, 'Neutron Activation Tables Vol.6', New York, 1976
  14. IAEA, /Handbook on Nuclear Activation Analysis Data', IAEA Tec. Rep. No. 273, 1987
  15. J. H. Lee, J. M. Lim, K. H. Kim, Y. S. Chung, and K. Y. Lee, J. Radioanal. Nucl. Chem., 256, 553-560(2003) https://doi.org/10.1023/A:1024520320578
  16. K. H. Kim, J. H. Lee, and M. S. Jang, Environmental Pollution, 118, 41-51(2002) https://doi.org/10.1016/S0269-7491(01)00279-2
  17. S. R. Taylor and S. M. McLennan, 'The Continental Crust: Its Composition and Evolution', Blackwell Sci., Cambridge, Mass., 1985
  18. N. Z. Heidam, Atmospheric Environment, 16, 1923-1931(1982) https://doi.org/10.1016/0004-6981(82)90463-2