Effect of Monensin and Fish Oil Supplementation on Biohydrogenation and CLA Production by Rumen Bacteria In vitro When Incubated with Safflower Oil

  • Wang, J.H. (Department of Animal Science, Chungbuk National University) ;
  • Choi, S.H. (Department of Animal Science, Chungbuk National University) ;
  • Yan, C.G. (Department of Animal Science, Yan Bian University) ;
  • Song, M.K. (Department of Animal Science, Chungbuk National University)
  • Received : 2004.09.22
  • Accepted : 2004.11.01
  • Published : 2005.02.01


An in vitro study was conducted to examine the effect of monensin or fish oil addition on bio-hydrogenation of $C_{18^-} unsaturated fatty acids and CLA production by mixed ruminal bacteria when incubated with safflower oil. Commercially manufactured concentrate (1%, w/v) with safflower oil (0.2%, w/v) were added to mixed solution (600 ml) of strained rumen fluid and McDougalls artificial saliva (control). Monensin $Rumensin^{(R)}$, 10 ppm, w/v, MO), mixed fish oil (0.02%, w/v, absorbed to 0.2 g alfalfa hay, FO) or similar amounts of monensin and fish oil (MO+FO) to MO and FO was also added into the control solution. All the culture solutions prepared were incubated in the culture jar anaerobically at $39^{\circ}C$ up to 12 h. Higher pH (p<0.047) and ammonia concentration (p<0.042) were observed from the culture solution containing MO at 12 h incubation than those from the culture solutions of control or FO. The MO supplementation increased (p<0.0001-0.007) propionate proportion of culture solution but reduced butyrate proportion at 6 h (p<0.018) and 12 h (p<0.001) of incubations. Supplementation of MO or MO+FO increased (p<0.001) the proportions of $C_{18:2}$. The MO alone reduced (p<0.022-0.025) the proportion of c9,t11-CLA compared to FO in all incubation times. The FO supplementation increased the proportion of c9,t11-CLA. An additive effect of MO to FO in the production of c9,t11-CLA was observed at 6 h incubation. In vitro supplementation of monensin reduced hydrogenation of $C_{18^-}$UFAs while fish oil supplementation increased the production of CLA.


Safflower Oil;CLA;Monensin;Fish Oil;In vitro;Rumen Bacteria


  1. Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13:156-163.
  2. Ha, Y. L., N. K. Grimm and M. W. Pariza. 1987. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis. 8(12):1881-1887.
  3. Lepage, G. and C. C. Roy. 1986. Direct transesterification of all classes of lipid in a one-step reaction. J. Lipid Research. 27:114-121.
  4. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheeps saliva. Biochem. J. 43:99-109.
  5. Wang, J. H., M .K. Song, Y. S. Son and M. B. Chang. 2002a. Effect of concentrate level on the formation of conjugated linoleic acid and trans-octadecenoic acid by ruminal bacteria when incubated with oilseeds in vitro. Asian-Aust. J. Anim. Sci. 15 (5):687-694.
  6. Wang, J. H., M. K. Song, Y. S. Son and M. B. Chang. 2002b. Addition of seed-associated or free linseed oil on the formation of cis-9, trans-11 conjugated linoleic acid and octadecenoic acid by ruminal bacteria in vitro. Asian-Aust. J. Anim. Sci. 15 (8):1115-1120.
  7. Newbold, C. J., R. J. Wallace and N. D. Walker. 1993. The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. J. Appl. Bacteriol. 75:129-134.
  8. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. Mcgraw Hill Book Co., NY.
  9. Lee, K. N., D. Kritchevsky and M. W. Pariza. 1994. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 108:19-25.
  10. Dhiman, T. R., G. R. Anand, L .D. Satter and M. W. Pariza. 1996. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 79 (Suppl.1):137 (Abs.).
  11. Chouinard, P. Y., L. Corneau, D. E. Bauman, W. R. Butler, Y. Chilliard and J. K. Drackley. 1998a. Conjugated linoleic acid content of milk from cows fed different sources of dietary fat. J. Anim. Sci. 76, Suppl. 1.
  12. SAS. 1985. SAS User′s Guide: Statistical Analysis Systems Institute, Inc., Cary, NC.
  13. Chilliard, Y., J. M. Chardigny, J. Chabrot, A. Ollier, J. L. Sebedio and M. Doreau. 1999. Effects of ruminal or postruminal fish oil supply on conjugated linoleic acid (CLA) content of cow milk fat. Proc. Nutr. Soc. 58:70A (Abs.).
  14. Spears, J. W. and R. W. Harvey. 1984. Performance, ruminal and serum characteristics of steers fed lasalocid on pasture. J. Anim. Sci. 58:460-464.
  15. Yang, C. J. and J. B. Russell. 1993. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. J. Anim. Sci. 71:3470-3476.
  16. Russel, J. B. 1987. Aproposed model of monnensin action in inhibiting rumen bacteria growth: Effects on ion flux and protonmotive force. J. Anim. Sci. 67:1519-1525.
  17. Folch, J., M. Lee and G. H. Sloan-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226:497-509.
  18. Fellner, V., F. D. Sauer and J. K. G. Kramer. 1997. Effect of nigericin, monensin, and tetronasin on biohydrogenation in continous flow-through ruminal fermenters. J. Dairy Sci. 80:921-928.
  19. Sauer, F. D., V. Fellner, R. Kinsman, J. K. Kramer, H. A. Jackson, A. J. Lee and S. Chen. 1998. Methane output and lactation response in Hplstein cattle with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76:906-914.
  20. Wang, J. H., S. H. Choi and M. K. Song. 2003. Effects of concentrate and roughage ratio on the formation of cis-9, trans-11 CLA and trans-11-octadecenoic acid in rumen fluid and plasma of sheep when fed high oleic or high linoleic acid oils. Asian-Aust. J. Anim. Sci. 16(11):1604-1609.
  21. Dhiman, T. R., G. R. Anand, L. D. Satter and M. W. Pariza. 1999. Conjugated Linoleic Acid Content of Milk from Cows Fed Different Diets. J. Dairy Sci. 82:2146-2156.
  22. Griinari. J. M. and D. E. Bauman. 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk of ruminants. In: Advances in Conjugated Linoleic Acid Research, Volume 1, (Ed. M. P. Yurawecz, M. M. Mossoba, J. K. G. Kramer, M. W. Pariza, G. J. Nelson), AOCS press, Illinois, Chapter 13, pp. 180-200.
  23. Michal, J. J., B. P. Chew, T. D. Schultz and T. S. Wong. 1992. Interaction of conjugated dienoic derivatives of linoleic acid with-carotene on cellular host defense. FASEB J. 6, A1102.
  24. Wang, J. H. and M. K. Song. 2003. pH affects the in vitro formation of cis-9, trans-11 CLA and trans-11 octadecenoic acid by ruminal bacteria when incubated with oilseeds. Asian-Aust. J. Anim. Sci. 16(12):1743-1748.

Cited by

  1. Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate vol.82, pp.3, 2011,
  2. Cis-9, trans-11-Conjugated Linoleic Acid in Dairy Goat Milk was Increased by High Linoleic (Soybean Oil) or Linolenic (Linseed Oil) Acid Diet vol.33, pp.4, 2013,
  3. The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen vol.29, pp.3, 2016,