The hyperfine interaction in water-solvent system

물-용매계에서의 초미세 상호작용

  • 이미녕 (성균관대학교 자연과학부 화학전공) ;
  • 김태관 (성균관대학교 자연과학부 화학전공) ;
  • 이성기 (성균관대학교 자연과학부 화학전공) ;
  • 박윤창 (성균관대학교 자연과학부 화학전공)
  • Received : 2005.02.14
  • Accepted : 2005.03.02
  • Published : 2005.06.25

Abstract

The N hyperfine coupling constants ($a_N$) of di-t-butyl nitroxide (DTBN) radicals in water-solvent system were measured with EPR spectroscopy. Various kinds of the solvents with different polarity such as acetone, dimethylsulfoxide (DMSO), methanol, ethanol and 1-propanol were applied and studied. Equilibrium constants for the solvation equilibrium and the solvent parameters ($E_T$, molar transition energy) of various water-solvent system were obtained from the experimental results and are presented. The $a_N$ values were plotted as a function of mole fraction of the solvent. In case of water-DMSO, water-ethanol and water-1-propanol system, slight negative deviations from the straight line were observed. In water-acetone system, the absorption wavelength (${\lambda}$) due to ${\eta}{\rightarrow}{\pi}^{\ast}$ transition increased linearly with the increase of mole fraction of acetone. The relationship between $a_N$ of DTBN and ${\lambda}$ due to ${\eta}{\rightarrow}{\pi}^{\ast}$ transition in water-acetone and water-DMSO system was examined. It was found that the electronic structure of the nitroxide radicals is stablized from the fact that the N hyperfine coupling constants of DTBN radicals are greatly unaffected in the environment of water-solvent system.

Keywords

di-tert-butyl nitroxide;solvent-solvent system;water-solvent system;hyperfine coupling

References

  1. M. P. Watts, R. E. Van Reet and M. P. Eastman, J. Chem. Edu., 50, 287(1973) https://doi.org/10.1021/ed050p287
  2. H. Takase, K. Morihashi and O. Kikuchi, Bull. Chem. Soc. Jpn., 64(12), 3511(1991) https://doi.org/10.1246/bcsj.64.3511
  3. G. Stout and J. B. F. N. Engberts, J. Org. Chem., 39, 3800(1974) https://doi.org/10.1021/jo00939a050
  4. E. M. Kosower, 'An Introduction to Physical Organic Chemistry', p. 293, Willy, New York, London, Sydney, 1968
  5. J. Gendell, J. H. Freed and K. Frankel, J. Chem. Phys., 37, 2832(1962) https://doi.org/10.1063/1.1733110
  6. S. M. Matter and A. D. Stephens, Chem. Phys. Letters, 347, 189(2001) https://doi.org/10.1016/S0009-2614(01)01036-3
  7. A. Carrington and A. D. McLachlan, 'Introduction to Magnetic Resonance', Harper and Row, New York, p. 14, 1967
  8. E. G. Rozanstev, 'Free Nitroxyl Radicals', Plenum Press, New York, 1970
  9. O. H. Griffith, D. W. Conell and H. M. McConell, J. Chem. Phys., 43, 2909(1965) https://doi.org/10.1063/1.1697233
  10. T. Kawamura, S. Matsunami and T. Yonezawa, Bull. Chem. Soc. Japan, 40, 1111(1967) https://doi.org/10.1246/bcsj.40.967
  11. J. E. Wertz and J. R. Bolton, 'Electron Spin Resonance Elementary Theory and Practical Application', McGraw-Hill, New York, 1972
  12. K. Mukai, H. Nishiguchi, K. Ishizu, Y. Deguchi and H. Takai, Bull. Chem. Soc. Japan, 40, 2731(1967) https://doi.org/10.1246/bcsj.40.967
  13. Th. A. J. W. Wajier, A. Mackor and Th. J. de. Boer, Tetrahedron, 25, 175(1969) https://doi.org/10.1016/S0040-4020(01)99469-4
  14. Y. Y. Lin and R. S. Drago, J. Amer. Chem. Soc., 93, 891(1971) https://doi.org/10.1021/ja00733a016
  15. E. M. Kosower, J. Amer. Chem. Soc., 80, 3253(1958) https://doi.org/10.1021/ja01537a053
  16. E. M. Kosower, J. Chem. Phys., 61, 230(1964)
  17. B. R. Knauer and J. J. Napier, J. Amer. Chem. Soc., 98, 4395(1976) https://doi.org/10.1021/ja00431a010
  18. K. Umemoto, Y. Deguchi and H. Takaki, Bull. Chem. Soc. Japan, 36, 560(1963) https://doi.org/10.1246/bcsj.36.560
  19. I. Novak , L. J. Harrison, B. Kovak and L. M. Pratt, J. Org. Chem., 69(22), 7628(2004) https://doi.org/10.1021/jo0401671
  20. Y. Deguchi, Bull. Chem. Soc. Japan, 35, 260(1962) https://doi.org/10.1246/bcsj.35.260
  21. A. H. Cohen and B. M. Hoffman, J. Amer. Chem. Soc., 95, 891(1971) https://doi.org/10.1021/ja00784a082