The hyperfine interaction in water-solvent system

물-용매계에서의 초미세 상호작용

  • 이미녕 (성균관대학교 자연과학부 화학전공) ;
  • 김태관 (성균관대학교 자연과학부 화학전공) ;
  • 이성기 (성균관대학교 자연과학부 화학전공) ;
  • 박윤창 (성균관대학교 자연과학부 화학전공)
  • Received : 2005.02.14
  • Accepted : 2005.03.02
  • Published : 2005.06.25

Abstract

The N hyperfine coupling constants ($a_N$) of di-t-butyl nitroxide (DTBN) radicals in water-solvent system were measured with EPR spectroscopy. Various kinds of the solvents with different polarity such as acetone, dimethylsulfoxide (DMSO), methanol, ethanol and 1-propanol were applied and studied. Equilibrium constants for the solvation equilibrium and the solvent parameters ($E_T$, molar transition energy) of various water-solvent system were obtained from the experimental results and are presented. The $a_N$ values were plotted as a function of mole fraction of the solvent. In case of water-DMSO, water-ethanol and water-1-propanol system, slight negative deviations from the straight line were observed. In water-acetone system, the absorption wavelength (${\lambda}$) due to ${\eta}{\rightarrow}{\pi}^{\ast}$ transition increased linearly with the increase of mole fraction of acetone. The relationship between $a_N$ of DTBN and ${\lambda}$ due to ${\eta}{\rightarrow}{\pi}^{\ast}$ transition in water-acetone and water-DMSO system was examined. It was found that the electronic structure of the nitroxide radicals is stablized from the fact that the N hyperfine coupling constants of DTBN radicals are greatly unaffected in the environment of water-solvent system.

References

  1. M. P. Watts, R. E. Van Reet and M. P. Eastman, J. Chem. Edu., 50, 287(1973) https://doi.org/10.1021/ed050p287
  2. E. G. Rozanstev, 'Free Nitroxyl Radicals', Plenum Press, New York, 1970
  3. J. E. Wertz and J. R. Bolton, 'Electron Spin Resonance Elementary Theory and Practical Application', McGraw-Hill, New York, 1972
  4. O. H. Griffith, D. W. Conell and H. M. McConell, J. Chem. Phys., 43, 2909(1965) https://doi.org/10.1063/1.1697233
  5. I. Novak , L. J. Harrison, B. Kovak and L. M. Pratt, J. Org. Chem., 69(22), 7628(2004) https://doi.org/10.1021/jo0401671
  6. S. M. Matter and A. D. Stephens, Chem. Phys. Letters, 347, 189(2001) https://doi.org/10.1016/S0009-2614(01)01036-3
  7. Y. Deguchi, Bull. Chem. Soc. Japan, 35, 260(1962) https://doi.org/10.1246/bcsj.35.260
  8. K. Mukai, H. Nishiguchi, K. Ishizu, Y. Deguchi and H. Takai, Bull. Chem. Soc. Japan, 40, 2731(1967) https://doi.org/10.1246/bcsj.40.967
  9. T. Kawamura, S. Matsunami and T. Yonezawa, Bull. Chem. Soc. Japan, 40, 1111(1967) https://doi.org/10.1246/bcsj.40.967
  10. B. R. Knauer and J. J. Napier, J. Amer. Chem. Soc., 98, 4395(1976) https://doi.org/10.1021/ja00431a010
  11. H. Takase, K. Morihashi and O. Kikuchi, Bull. Chem. Soc. Jpn., 64(12), 3511(1991) https://doi.org/10.1246/bcsj.64.3511
  12. Th. A. J. W. Wajier, A. Mackor and Th. J. de. Boer, Tetrahedron, 25, 175(1969) https://doi.org/10.1016/S0040-4020(01)99469-4
  13. G. Stout and J. B. F. N. Engberts, J. Org. Chem., 39, 3800(1974) https://doi.org/10.1021/jo00939a050
  14. A. Carrington and A. D. McLachlan, 'Introduction to Magnetic Resonance', Harper and Row, New York, p. 14, 1967
  15. Y. Y. Lin and R. S. Drago, J. Amer. Chem. Soc., 93, 891(1971) https://doi.org/10.1021/ja00733a016
  16. A. H. Cohen and B. M. Hoffman, J. Amer. Chem. Soc., 95, 891(1971) https://doi.org/10.1021/ja00784a082
  17. K. Umemoto, Y. Deguchi and H. Takaki, Bull. Chem. Soc. Japan, 36, 560(1963) https://doi.org/10.1246/bcsj.36.560
  18. E. M. Kosower, 'An Introduction to Physical Organic Chemistry', p. 293, Willy, New York, London, Sydney, 1968
  19. E. M. Kosower, J. Amer. Chem. Soc., 80, 3253(1958) https://doi.org/10.1021/ja01537a053
  20. E. M. Kosower, J. Chem. Phys., 61, 230(1964)
  21. J. Gendell, J. H. Freed and K. Frankel, J. Chem. Phys., 37, 2832(1962) https://doi.org/10.1063/1.1733110