Design of E-Tongue System using Neural Network

신경회로망을 이용한 휴대용 전자 혀 시스템의 설계

  • 정영창 (호서대학교 전기정보통신공학부) ;
  • 김동진 (호서대학교 전기정보통신공학부) ;
  • 김정도 (호서대학교 전기정보통신공학부) ;
  • 정우석 (호서대학교 전기정보통신공학부)
  • Published : 2005.04.28

Abstract

In this paper, we have designed and implemented a portable e-tongue (electronic tongue) system using MACS (multi array chemical sensor) and PDA. The system embedded in PDA has merits such as comfortable user interface and data transfer by internet from on-site to remote computer. MACS was made up 7 electrodes (${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH) and a reference electrode. For learning the system, we adapted the Levenberg-Marquardt algorithm based on the back-propagation, which could iteratively learned the pre-determined standard patterns, in e-tongue system. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. The e-tongue was applied to whiskeys and cognac (one high level whisky, one low level whiskey, two cognac) and 2 sample whiskeys for each standard patterns and unknown patterns. The relationship between the standard patterns and unknown patterns can be easily analyzed.

본 논문은 이온 선택성 전극을 모듈화한 MACS를 사용하여 시스템의 크기를 축소할 수 있었고, PDA를 사용함으로써 측정된 데이터를 장소에 구애받지 않고 분석할 수 있는 휴대용 전자혀 시스템을 개발하였다. MACS는 ${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH의 7종의 이온 선택성 전극을 이용하여 구성하였으며, 초기화 및 교정과정과 완충용액에 의한 안정화 과정을 거친 후 MACS로 시료에 대한 각각의 이온선택성 전극의 변화를 측정한다. 이렇게 각 전극으로부터 측정된 데이터를 이용하여 신경회로망 알고리즘으로 측정된 시료의 종류를 구분할 수 있다. 실험은 분류가 어렵다고 알려진 고급양주와 저급양주를 분류하는 것으로 진행되었으며, 성공적이며 우수한 실험 결과를 얻었다 이로부터 사용된 알고리즘이 휴대용 전자혀 시스템에 적절히 사용될 수 있음을 밝혔으며, 실제 휴대용 전자혀 시스템에 간단한 학습에 의해 적용될 수 있을 것으로 생각된다.