Kinetics of Anhydride Curing of Epoxy : Effect of Chain Length of Anhydride

에폭시 무수화물 경화의 동력학적 연구: 무수화물의 사슬 길이 효과

  • Chung, I. (Department of Applied Chemical Engineering) ;
  • Lee, J. (Advance Materials Division, Korea Research Institute of Chemical Technology)
  • 정익수 (목원대학교 응용화학공학과) ;
  • 이재락 (한국화학연구소 화학소재연구부)
  • Published : 2005.03.31


The ruling kinetics of epoxy resins with 3 different kinds or alkenylsuccinic anhydride (ASA) having C-8, C-12, and C-16 pendant side chain length with two different catalysts was studied by using differential scanning calorimetry (DSC). Nonisothermal and isoconversional method has been used for characterizing the effect of the pendant side chain length in the curing process. Results or nonisothermal method showed that there was no significant difference in the effect of the pendant side chain length of ASA. But isoconversional analysis showed that the value of the activation energy for the initiation reaction or C-8, C-12, and C-16 were $61.7{\sim}57.7kJ/mol$, $63.0{\sim}57.3 kJ/mol$, and $130.4{\sim}94.2 kJ/mol$, respectively, depending on the catalyst used. The values of activation energy for the initiation is different as reported value of 20 kJ/mol which indicating the difference in the effect of the pendant side chain length of ASA in the initial stage of the reaction.


  1. R.F. Fischer, 'Polyester from Epoxides and Anhydrides', J. Polym. Sci., 44, 155 (1960)
  2. R. B. Prime, 'Thermosets', in Thermal Characterization of Polymeric Materials, 2nd Ed. Academic Press, New York, 1997
  3. V. Trappe, W. Burchard, and B. Steinmann,'Anhydride-Cured Epoxies via Chain Reaction. I. The Phenyl Glycidyl Ether/Phthalic Acid Anhydride System', Macromolecules, 24, 4738 (1991)
  4. C. C. Riccardi, J. Dupuy, and R. J. J. Williams, 'A Simple Model to Explain the Complex Kinetic Behavior of Epoxy/Anhydride Systems', J Polym. Sci. B Polym. Phys., 37, 2799 (1999)
  5. U. Khanna and M. Chanda, 'Kinetics of Anhydride Curing of Isophthalic Diglycidyl Ester Using Differential Scanning Calorimetry', J. Appl. Polym. Sci., 49, 319 (1993)
  6. L. W. Chen, S. C. Fu, and C. S. Cho, 'Kinetics of Aryl Phosphinate Anhydride Curing of Epoxy Resins Using Differential Scanning Calorimetry', Polym. Int., 46, 325 (1998)
  7. M. I. G. de Miranda, C. I. D. Bica, and D. Samios, 'Application of the Half-Width Kinetic Method on the Amine-Initiated Cross-Linking of an Epoxy Resin with Cyclic Anhydrides', Polymer, 38, 4843 (1997)
  8. S. Vyazovkin and N. Sbirrazzuoli,'Mechanism and Kinetics of Epoxy-Amine Cure Studied by Differential Scanning Calorimetry', Macromolecules, 29, 1867 (1996)
  9. S. Vyazovkin, 'A Unified Approach to Kinetic Processing of Nonisothermal Data', Int. J. Chem. Kinet., 28, 95 (1996)
  10. S. Vyazovkin and N. Sbirrazzuoli, 'Kinetic Analysis of Isothermal Cures Performed Below the Limiting Glass Transition Temperature', Macromol. Rapid Commun., 20, 387 (1999)
  11. J.C. Jung, S.K. Lee, K.S. Lee, and K.Y. Choi, 'Chain Length Effect of Alkenyl Succinic Anhydride on Thermal and Mechanical Properties of the Cured Epoxy Resins', Die Angew. Makromol. Chem., 185/186, 129 (1991)
  12. K. E. J. Barrett, 'Determination of Rates of Thermal Decomposition of Polymerization Initiators with a Differential Scanning Calorimeter', J Appl. Polym. Sci, 11, 2358 (1967)
  13. H. E. Kissinger, 'Reaction Kinetics in Differential Thermal Analysis', Anal. Chem., 29, 1702 (1957)