Assessment of Inactivation for Campylobacter spp. Attached on Chicken Meat

계육에 오염된 Campylobacter 균의 불활성화 평가

  • Jang Keum-Il (Department of Food Science and Technology Chung-buk National University) ;
  • Jeong Heon-Sang (Department of Food Science and Technology Chung-buk National University) ;
  • Kim Chung-Ho (Department of Food and Nutrition, Seowon University) ;
  • Kim Kwang-Yup (Department of Food Science and Technology Chung-buk National University)
  • Published : 2005.12.01


The inactivation efficiency of Campylobacter jejuni were assessed in vitro and in vivo using confocal laser microscopy and flow cytometry. C. jejuni cells were inactivated with $1\%$ (w/v) trisodium phosphate (TSP) and the live cells and inactivated cells were distinguished by staining with LIVE/DEAD BacLight Bacteria Viability fluorescent probe. After treatment of TSP for 5 min, most of C. jejuni cells turned to coccoid form from original spiral shape. C. jejuni cells lost total cell viability in the absence of organic nutrients but did not lost total cell viability in the presence of organic nutrients. In vivo test, C. jejuni cells turned to viable but non-culturable (VBNC) form after TSP treatment and remained alive on chicken skin. C. jejuni cells attached on chicken meat would transform to coccoid form by sanitizer treatment, but could possibly be alive by the benefits of organic nutrients present in chicken meat.


  1. Shin, S. Y., K. Y. Kim, and J. H. Park. 1998. Survival of Campylobacter jejuni under aerobic condition. Kor. J. Food SCI. Technol. 30: 916-923
  2. Centers for disease control. 1988. Campylobacter isolates in the United States, 1982-1986. Morbid. Morlat. Weekly Rep. 37: 1-13
  3. Koneman, E. W., S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn Jr.. 1997. Chapter 6. Curved gram-negative bacilli and oxidative-positive fermenters : Campylobacteraceae and Vibrionaceae. pp 321-361. In Color atlas and textbook of diagnostic microbiology, 5th ed. Lippincott. New York
  4. Sean, F. A., J. S. Norman, I. F. Patricia, and L. S. David. 1999. Campylobacter jejuni-An Emerging Foodborne Pathogen. Emerging lnfec. Disease 5: 28-35
  5. Oh, J. S., K. S. Shin, Y. D. Yoon, and J. M. Park. 1988. Prevalence of Campylobacter jejuni in Broilers and Chicken Processing Plants. Kor. J. Food Hygiene. 3: 27-36
  6. FDA. Bad Bug Book: Campylobacter jejui. Available from: Accessed October 1, 2005
  7. Fricker, C. R. and R. W. Park. 1989. A two-year study of the distribution of thermophilic Campylobacters in human, environmental and food samples from the Reading area with particular reference to toxin production and heat-stable serotype, J. Appl. Bacteriol. 66: 477-490
  8. Oliver, J. D. 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43: 93-100
  9. Bogosian, G., P. J. L. Morris, and J. P. O'Neil. 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. App. Environ. Microbiol. 64: 1736-1742
  10. Day, A. P. and J. D. Oliver. 2004. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. J. Microbiol. 42: 69-73
  11. Besnard, V., M. Federighi, E. Declerq, F. Jugiau, and J. M. Cappelier. 2002. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet. Res. 33: 359-370
  12. Bovill, R. A. and B. M. Mackey. 1997. Resuscitation of 'nonculturable' cells from aged cultures of Campylobacter jejuni. Microbiology 143: 1575-1581
  13. Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Delattre, and M. Federighi. 1999. Physiological characterization of viablebut-nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 65: 1110-1116
  14. Stem, N. J., D. M. Jones, I. V. Wesley, and D. M. Rollins. 1994. Colonization of chicks by non-culturable Campylo-bacter spp. Lett. Appl. Microbiol. 18: 333-336
  15. Jones, D. M., E. M. Sutcliffe, and A. Curry. 1999. Recovery of viable but non-culturable Campylobacter jejuni. J. Gen. Microbiol. 137: 2477-2482
  16. Breen, P. J., H. Salari, and C. M. Compadre. 1997. Elimination of Salmonella contamination from poultry tissue by Cetylpyridinium chloride solutions. J. Food Prot. 60: 1019-1021
  17. Chung, K. T., J. S. Dickson, and J. D. Crouse. 1989. Effects of nisin on growth of bacteria attached to meat. Appl. Environ. Microbiol. 55: 1329-1333
  18. Hwang, C. A. and L. R. Beuchat. 1995. Efficacy of selected chemical for killing pathogenic and spoilage microorganisms on chicken skin. J. Food Prot. 58: 19-23
  19. Xiong, H., Y. Li, M .F. Slavik, and J. T. Walker. 1998. Spraying chicken skin with selected chemicals to reduce attached Salmonella typhimurium. J. Food Prot. 61: 272-275
  20. Kim, C. R. and K. H. Kim. 2000. Physicochemical quality and gram negative bacteria in refrigerated chicken legs treated with trisodium phosphate and acetic acid. Food Sci. Biotechnol. 9: 218-221
  21. Kim, K. Y., J. F. Frank, and S. E. Craven. 1996. Threedimensional visualization of Salmonella attachment to poultry skin using confocal scanning laser microscopy. Lett. Appl. Microbiol. 22: 280-282
  22. Chung, K. T., J. S. Dickson, and J. D. Crouse. 1989. Attachment and proliferation of bacteria on meat. J. Food Prot. 52: 173-177
  23. Cappelier, J. M., C. Magras, J. L. Jouve, and M. Federighi. 1999. Recovery of viable but non-culturable Campylobacter jejuni cells in two animal models. Food Microbiol. 16: 375-383
  24. Dickson, J. S. and M. E. Anderson. 1992. Microbiological decontamination of food animal carcasses by washing and sanitizing system: A review. J. Food Prot. 55: 133-140
  25. Thomas, C. J. and T. A. McMeekin. 1984. Effect of water uptake by poultry tissues on contamination by bacteria during immersion in bacterial suspensions. J. Food Prot. 47: 398-402
  26. Lillard, H. S. 1986. Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J. Food Sci. 51: 54-56
  27. Dickson, J. S. and M. Koohmaraie. 1989. Cell surface charge characteristics and their relationship to bacterial attachment to meat surface. Appl. Environ. Microbiol. 55: 832-836