Cytotoxic Phenylpropanoids from the Rhizomes of Alpinia galanga

  • NAM Joo-Won ;
  • KIM Sun-Jack ;
  • HAN Ah-Reum ;
  • LEE Sang Kook ;
  • SEO Eun-Kyoung
  • Published : 2005.12.01

Abstract

A bioassay-guided fractionation of the n-hexane and chloroform extracts of the rhizomes of Alpinia galanga led to the isolation of two active compounds, 1'S-1'-acetoxychavicol acetate (1) and p-coumaryl alcohol $\gamma$-O-methyl ether (2). 1'S-1'-acetoxychavicol acetate (1) exhibited significant cytotoxicity against all human cancer cell lines tested (A549; $IC_{50}$ 8.14, SNU 638; 1.27, HCTl16; 1.77, HT1080; 1.2, HL60; $IC_{50}$ 2.39 ${\mu}g/ml$), whereas p-coumaryl alcohol $\gamma$-O-methyl ether (2) showed selective cytotoxicity against the SNU638 cell ($IC_{50}$ = 1.62${\mu}g/ml$).

Keywords

Alpinia galanga;Zingiberaceae;cytotoxicity, l'S-l'-acetoxychavicol acetate

References

  1. Akhtar, P., Ali, M., Mir, S. R, and Sharma, M. P. (2004). Volatile constituents of rhizomes of Alpinia galanga (Linn.) Willd. Journal of Essential Oil-Bearing Plants 7(3), 243-246 https://doi.org/10.1080/0972-060X.2004.10643400
  2. Ando, S., Matsuda, H., Morikawa, T., and Yoshikawa, M. (2005). I'S-I'-Acetoxychavicol acetate as a new type inhibitor of interferon-f production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorg. Med. Chem. 13, 3289-3294 https://doi.org/10.1016/j.bmc.2005.02.022
  3. Grieve, M. (1994). A modem herbal (C. F. Leyel, Ed.), pp. 339340. Dorset Press, Lonon
  4. Ito, K, Nakazato, T., Murakami, A, Yamato, K, Miyakawa, Y., Yamada, T., Hozumi, N., Ohigashi, H., Ikeda, Y., Kizaki, M. (2004). Induction of apoptosis in human myeloid leukemic cells by l'-acetoxychavicol acetate through a mitochondrialand fas-mediated dual mechanism. Clin. Cancer Res. 10(6), 2120-2130 https://doi.org/10.1158/1078-0432.CCR-1142-03
  5. Ito, K, Nakazato, T., Xian, M. J., Yamada, T., Hozumi, N., Murakami, A, Ohigashi, H., Ikeda, Y., and Kizaki, M. (2005). 1'-Acetoxychavicol acetate is a novel nuclear factor B inhibitor with significant activity against multiple myeloma in vitro and in vivo. Cancer Res. 65(10), 4417-4424 https://doi.org/10.1158/0008-5472.CAN-05-0072
  6. Jaki, B., Franzblau, S., and Pauli, G. F. (2004). An NMR method towards the routine chiral determination of natural products. Phytochemical Analysis 15, 213-219 https://doi.org/10.1002/pca.760
  7. Janssen, A. M. and Scheffer, J. J. C. (1985). Acetoxychavicol acetate, an antifungal component of Alpinia galanga. Planta Med. 6, 507-511
  8. Jirovetz, L., Buchbauer, G., Shafi, M. P., and Leela, N. K (2003). Analysis of the essential oils of the leaves, stems, rhizomes and roots of the medicinal plant Alpinia galanga from southern India. Acta Pharmaceutica (Zagreb, Croatia) 53(2), 73-81
  9. Lee, S. K, Cui, B., Mehta, R. R, Kinghorn, A. D., and Pezzuto, J.M. (1998). Cytostatic mechanism and antitumor potential of novel IH-cyclopenta[b]benzofuran Iignans isolated from Aglaia elliptica. Chemico-Biol. Interact 115, 215-228 https://doi.org/10.1016/S0009-2797(98)00073-8
  10. Ly, T. N., Shimoyamada, M., Kato, K, and Yamauchi, R (2003). Isolation and characterization of some antioxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J. Agric. Chem. 51,4924-4929 https://doi.org/10.1021/jf034295m
  11. Matsuda, H., Ando, S., Morikawa, T., Kataoka, S., and Yoshikawa, M. (2005). Structure-activity relationships of 1 's-1 '-acetoxychavicol acetate for inhibitory effect on NO production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorg. Med. Chem. Let. 15, 1949-1953 https://doi.org/10.1016/j.bmcl.2005.01.070
  12. Matsuda, H., Morikawa, T., Managi, H., and Yoshikawa, M. (2003). Antiallergic principles from Alpinia galanga: Structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-$\alpha$. and IL-4 in RBL-2H3 Cells. Bioorg. Med. Chem. Let. 13,3197-3202. https://doi.org/10.1016/S0960-894X(03)00710-8
  13. Matsuda, H., Pongpiriyadacha, Y., Morikawa, T., Ochi, M., and Yoshikawa, M. (2003). Gastroprotective effects of phenylpropanoids from the rhizomes of Alpinia galanga in rats: structural requirements and mode of action. Eur. J. Pharmacol. 471, 59-67 https://doi.org/10.1016/S0014-2999(03)01785-0
  14. Mitsui, S., Kobayashi, S., Nagahori, H., and Ogiso, A. (1976). Constituents from seeds of Alpinia galanga Wild. And their anti-ulcer activities. Chem. Pharm. Bull. 24 (10), 2377-2382 https://doi.org/10.1248/cpb.24.2377
  15. Miyauchi, M., Nishikawa, A., Furukawa, F., Nakamura, H., Son, H. Y., Murakami, A., Koshimizu, K., Ohigashi, H., and Hirose, M. (2000). Inhibitory effects of l'-acetoxychavicol acetate on N-nitrosobis(2-oxopropyl)amine-induced initiation of cholangiocarcinogenesis in syrian hamsters. Jap. J. Cancer Res. 91(5), 477-481 https://doi.org/10.1111/j.1349-7006.2000.tb00970.x
  16. Moffatt, J., Hashimoto, M., Kojima, A., Kennedy, D.O., Murakami, A., Koshimizu, K., Ohigashi, H., and Matsui- Yuasa, I. (2000). Apoptosis induced by l'-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated with modulation of polyamine metabolism and caspase-3 activation. Carcinogenesis 21(12), 2151-2157 https://doi.org/10.1093/carcin/21.12.2151
  17. Morikawa, T., Ando, S., Matsuda, H., Kataoka, S., Muraoka, O., and Yoshikawa, M. (2005). Inhibitors of nitric oxide production from the rhizomes of Alpinia galanga: Structures of new 8-9' linked neolignans and sesquineolignan. Chem. Pharm. Bull. 53(6), 625-630 https://doi.org/10.1248/cpb.53.625
  18. Noro, T., Sekiya, T., Katoh, M., Oda, Y, Miyase, T., Kuroyanagi, M., Ueno, A., and Fukushima, S. (1988). Inhibitors of Xanthine Oxidase from Alpinia galanga. Chem. Pharm. Bull. 36(1), 244-248 https://doi.org/10.1248/cpb.36.244