Application with Winglet-Type Vortex Generators in an In-line Tube Arrangement

정렬형 관 배열에서의 와류발생기 응용

  • Kwak, Kyung-Min (School of Mechanical and Automotive Engineering, Kyungil University)
  • 곽경민 (경일대학교 기계자동차학부)
  • Published : 2005.12.01


Heat transfer enhancement and pressure loss penalty caused by three-row winglets built in three-row tube-bundles in an in-line arrangement, are compared between 'common flow up' and 'common flow down' winglet configurations. The 'common flow down' winglet-pairs recommended by the previous researchers bring about $10\%$ to $25\%$ increase in heat transfer enhancement and $20\%$ to $35\%$ increase in pressure loss penalty, in comparison with fin-tube bundles without winglets. For the 'common flow up' winglet-pairs, the spanwise distance between the trailing edges (${\Delta}y$) of winglet pairs was changed and investigated. Two types ot winglet are applied for triangular and rectangular shapes. In the triangular winglets with ${\Delta}y$=5 mm in in-line tube bundles, the heat transfer increased up to $10\%$, and simultaneously the pressure loss decreased by $8\%$ to $15\%$ for the Reynolds number (based on two times channel height) ranging from 300 to 2700, when the 'common flow up' winglets were built in. The performance of fin-tube bundles with triangular winglets is much superior to the rectangular one, because of the smaller pressure-loss penalty.

3열 정렬형 관군 배열에서 3열의 'common flow up'과 'common flow down' 형상의 와류발생기를 부착하여 와류발생기에 의한 열전달 촉진과 압력강하를 비교하였다 선행 연구자들이 제안한 'common flow down' 형상의 와류발생기는 와류발생기가 없는 휜-관군에 비해 열전달 촉진은 $10\%{\~}25\%$ 향상되었고, 압력강하는 $20\%{\~}35\%$ 증가하였다. 'common flow up' 형상의 와류발생기의 경우 후연 수평거리(${\Delta}y$)를 변화시키면서 평가하였다. 와류발생기는 삼각형과 사각형 형상을 적용하였다. 후연 수평거리(${\Delta}y$)가 5mm이고 삼각형의 'common flow up' 형상의 와류발생기가 정렬형 관군에서 설치될 때 Reynolds수(유로 높이의 배를 기준으로)가 $300{\~}2700$ 범위에서 열전달촉진은 10까지 향상하였고, 동시에 압력강하는 $8\%{\~}15\%$ 감소하였다. 삼각형 와류발생기가 부착된 휜-관군의 성능이 상대적으로 작은 압력강하 때문에 사각형 와류발생기가 부착된 휜-관군의 성능보다 좋게 나타났다.



  1. Fiebig, M.; Mitra, N.; Dong, Y. 'Simultaneous heat transfer enhancement and flow loss reduction of fin­tubes', Proc. 9th Int. Heat Transfer Conf, 4, Jerusalem, 1990, 51-55
  2. Fiebig, M. 'Vortex generators for compact heat exchangers', Journal of Enhanced Heat Transfer, 1995, 2, 43-61
  3. Fiebig, M.; Valencia, A.; Mitra, N.K. 'Wing-type vortex generators for fin-and tube heat exchangers', Experimental Thermal and Fluid Sci., 1993, 7, 287-­295
  4. Biswas, G.; Mitra, N.K.; Fiebig, M. 'Heat transfer enhancement in fin-tube exchangers by winglet type vortex generators', Int. J. Heat Mass Transfer, 1994, 37, 283-291
  5. Fiebig, M.; Valencia, A.; Mitra, N.K. 'Local heat transfer and flow losses in fin-tube heat exchangers with vortex generators: a comparison of round and flat tubes', Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 1993, 337-344
  6. Torii, K.; Kwak, K.M.; Nishino, K. 'Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers', Int. J. Heat Mass Transfer, 2002, 45, 3795-3801
  7. Mochizuki, S.; Yagi, Y.; Yang, W.J. 'Advances in single-blow method for performance evaluation of heat transfer surfaces', Pro. of 2nd Int. Symp. on Heat Transfer, 1, Beijing, China, 1988, 284-291
  8. Kays, W.M.; London, A.L. 'Compact heat exchangers', 2nd ed., McGraw-Hill, New York, Chap. 5, 1964
  9. Kline, S.J.; McClintock, F.A. 'Describing uncertainties in single sample exepriments', Mechanical Engineering, 1953, 75, 3-8
  10. Torii, K. 'Application of vortex generator and oval tubes to enhance performance of air-cooled condensers and other heat exchanger', NEDO Research Report, 99EF1-2000, 2001, 35-121
  11. Kim, N.H.; Cho, J.P.; Youn, B. 'An experimental investigation on the airside performance of fin-and-­tube heat exchangers having sinusoidal wave fins', Korean J. of Air-Conditioning and Refrigeration Engineering, 2004, 16(4), 355-367