Degradation and Conversion of Blood Group Antigens in Saliva

혈액형 항원의 분해와 변환에 관한 연구

  • Lim, Sang-Wook (Department of Oral Medicine & Oral Diagnosis, College of Dentistry, Seoul National University) ;
  • Park, Hee-Kyung (Section of Forensic Dentistry, Department of Forensic Medicine, National Institute of Scientific Investigation) ;
  • Jung, Seung-Eun (Department of Oral Medicine & Oral Diagnosis, College of Dentistry, Seoul National University) ;
  • Kho, Hong-Seop (Department of Oral Medicine & Oral Diagnosis, College of Dentistry, Seoul National University) ;
  • Kim, Young-Ku (Department of Oral Medicine & Oral Diagnosis, College of Dentistry, Seoul National University)
  • 임상욱 (서울대학교 치과대학 구강내과진단학교실) ;
  • 박희경 (국립과학수사연구소 법의학과 법치의학실) ;
  • 정승은 (서울대학교 치과대학 구강내과진단학교실) ;
  • 고홍섭 (서울대학교 치과대학 구강내과진단학교실) ;
  • 김영구 (서울대학교 치과대학 구강내과진단학교실)
  • Published : 2005.03.30

Abstract

Mucin glycoproteins are the primary carriers of the oligosaccharide moieties that constitute the blood group substances in human saliva. The aim of this study was to determine whether or not the conversion of either the A or B blood group antigens to the H antigen can occur during the degradation process of stored saliva samples. Forty subjects (20 subjects in each A and B blood group) identified as secretors were enrolled in this study. Fresh whole saliva samples and their clarified supernatants were stored at room temperature for 1 week. The conversion of the blood group antigens was detected by SDS-PAGE and immunoblotting. Among the subjects showing the conversion in whole saliva, glandular saliva samples were obtained from 8 subjects (4 subjects in each A and B blood group). Submandibular-sublingual saliva (SMSL) and a mixture of SMSL and parotid saliva (PS) were stored at room temperature for 1 week. The conversion of the blood group antigens was detected by the same method. The obtained results were as follows: 1. In the clarified samples of whole saliva, the A antigen was detected as being either intact (5%) or degraded molecules (95%) after the 1 week period. Conversion of the A antigen to the H antigen was detected in 5 subjects (25%). In the unclarified samples, the A antigen was either detected as degraded molecules (90%) or was not detected (10%). Conversion of the antigen had occurred in 4 subjects (20%). 2. In the clarified samples of whole saliva, the B antigen was detected as intact (20%) or as degraded molecules (65%) or was not detected (15%) after the 1 week period. Conversion of the B antigen to the H antigen was detected in 7 subjects (35%). In the unclarified samples, the B antigen was detected as intact (5%) or as degraded molecules (65%), or was not detected (30%). Conversion of the antigen was observed in 2 subjects (10%). 3. In the glandular saliva samples, only one of the four subjects displayed an antigenic conversion from the A to H antigen or from the B to H antigen. The conversion had occurred in both the SMSL samples and the SMSL and PS mixture. No degradation of the antigens was detected in the other three samples of the A or B blood groups, nor was there any conversion. The results demonstrated that conversion of the blood group antigens could occur in saliva, and suggested that the enzymes responsible for the conversion are present in saliva. Further studies on the origin and activity of the specific glycosidases in saliva as well as quantitative measurements of the antigenic conversion will be needed.

Mucin 당단백질은 인체 타액 성분 중 혈액형 항원을 표지하는 주요 성분으로 알려져 있다. 본 연구의 목적은 보관중인 타액 검체에서 일어나는 분해과정 중에 A형 혹은 B형 혈액형 항원이 H형 항원으로 변환이 일어나는 지를 조사하는데 있다. A형과 B형 각각 20명씩 총 40명의 분비자로부터 채취한 전타액과 상층액을 실온에서 1주일간 보관한 다음, SDS-PAGE와 immunoblotting법을 이용하여 혈액형 항원의 변환 여부를 조사하였다. 전타액에서 변환을 보인 연구대상 중에서 A형과 B형 각각 4명씩 총 8명에서 이하선 타액과 악하선-설하선 타액을 채취하였고, 악하선-설하선 타액과 악하선-설하선 타액 및 이하선 타액의 혼합액을 실온에서 1주일간 보관하였으며, 같은 방법으로 혈액형 항원의 변환 여부를 조사하여 다음과 같은 결론을 얻었다. 1. 전타액 상층액을 1주일 보관한 검체의 경우, A형 항원이 분해되지 않은 경우가 5%, 분해된 경우가 95%이었고, A형 항원의 H형 항원으로의 변환이 5명(25%)의 연구대상에서 관찰되었다. 원심분리하지 않은 전타액 검체에서는 90%의 경우에서 A형 항원이 분해된 형태로 관찰되었고 10%에서는 관찰되지 않았으며, 혈액형 항원의 변환은 4명(20%)의 연구대상에서 관찰되었다. 2. 전타액 상층액을 1주일 보관한 검체의 경우, B형 항원이 분해되지 않은 경우가 20%, 분해된 경우가 65%이었고 15%에서는 관찰되지 않았으며, B형 항원의 H형 항원으로의 변환이 7명(35%)의 연구대상에서 관찰되었다. 원심분리하지 않은 전타액 검체에서는 5%의 경우 B형 항원이 분해되지 않은 형태로 관찰되었고, 65%의 경우에서 분해된 형태로 관찰되었으며 30%에서는 관찰되지 않았다. 이 경우 혈액형 항원의 변환은 2명(10%)의 연구대상에서 관찰되었다. 3. 개별 타액선 타액검체의 경우, 4명중 각각 1명에서 A형 항원 혹은 B형 항원에서 H형 항원으로의 변환이 관찰되었다. 이 경우 혈액형 항원의 변환은 악하선-설하선 타액과 악하선-설하선 타액 및 이하선 타액의 혼합액 모두에서 일어났다. 그 외 3명의 검체에서는 항원의 분해나 변환이 관찰되지 않았다. 이상의 결과는 타액에서 혈액형 항원의 변환이 일어남을 보여주는 것으로 타액에 이러한 변환을 가능하게 하는 효소가 존재함을 암시해 주었다. 그러므로 향후 혈액형 항원 변환의 정량적 연구와 함께 타액에 존재 가능성이 있는 특정 당분해효소의 근원이나 활성에 대한 추가 연구가 필요하다.

References

  1. Hamper K, Caselitz J, Seifert G , Seitz R, Poschmann A. The occurrence of blood group substa nces (A, B, H, Le-a, Le-b) in salivary glands and salivary gland tumors. An immunohistochemical investigation. J Oral Pathol 1986;15:334-338 https://doi.org/10.1111/j.1600-0714.1986.tb00635.x
  2. Prakobphol A, Leffler H, Fisher S. The high-molecular-weight human mucin is the primary salivary carrier of ABH, Lea, and Leb blood group antigens. Crit Rev Oral Biol Med 1993;4:325-333 https://doi.org/10.1177/10454411930040031001
  3. Greenwell P. Blood group antigens: molecules seeking a function? Glycoconj J 1997;14:159-173 https://doi.org/10.1023/A:1018581503164
  4. Tanegashima A, Nishi K, Fukunaga T, Rand S, Brinkmann B. Ethnic differences in the expression of blood group antigens in the salivary gland secretory cells from German and Japanese non-secretor individuals. Glycoconj J 1996;13:537-545 https://doi.org/10.1007/BF00731441
  5. Kim W, Kim YK, Chung SC, Lee SW, Kho HS. Detection of ABH blood group antigens in the saliva of Koreans and their stability according to storage of saliva samples. Forensic Sci Int 2002;129:58-63 https://doi.org/10.1016/S0379-0738(02)00223-2
  6. Shin ES, Chung SC, Kim YK, Lee SW, Kho HS. The Relationship between Oral Candida carriage and the secretor status of blood group antigens in saliva. Oral Surg Oral Med Oral Pathol Oral Radiol. Endod 2003;96:48-53
  7. Levine MJ, Reddy MS, Tabak LA, Loomis RE, Bergey EJ, Jones PC, Cohen RE, Stinson MW, Al-Hashimi I. Structural aspects of salivary glycoproteins. J Dent Res 1987;66:436-441 https://doi.org/10.1177/00220345870660020901
  8. Burford-Mason AP, Weber JCP, Willoughby JMT. Oral carriage of Candida albicans, ABO blood group and secretor status in healthy subjects. J Med Vet Mycol 1988;26:49-56
  9. Lamey P-J, Darwazeh AMG, Muirhead J, Rennie JS, Samaranayake LP, MacFarlane TW. Chronic hyperplastic candidosis and secretor status. J Oral Pathol Med 1991;20:64-67 https://doi.org/10.1111/j.1600-0714.1991.tb00891.x
  10. Levy G, Aminoff D. Purification and properties of $\alpha -N-acetylgalactosaminidase $from Clostridium perfringens. J Biol Chem 1980;225:11737-11742
  11. Yatziv S, Flowers H. Action of $\alpha-D-galactosidase$on glycoprotein from human B-erythrocytes. Biochem Biophys Res Commun 1971;45:514-518 https://doi.org/10.1016/0006-291X(71)90849-7
  12. Hoskins LC. Bacterial degradation of gastrointestinal mucins. II. Bacterial origin of fecal ABH(O) blood group antigen-destroying enzymes. Gastroenterology 1968;54:218-224
  13. Hoskins LC, Zamcheck N. Bacterial degradation of gastrointestinal mucins. I. Comparison of mucin constituents in the stools of germ-free and conventional rats. Gastroenterology 1968;54:210-217
  14. Falk P, Hoskins LC, Lindstedt R, Svanborg C, Larson G. Deantigenation of human erythrocytes by bacterial glycosidases-evidence for the noninvolvement of medium- sized glycosphingolipids in the Dolichos biflorus lectin hemagglutination. Arch Biochem Biophys 1991;290:312-319 https://doi.org/10.1016/0003-9861(91)90546-U
  15. Hobbs L, Mitra M, Phillips R, Haibach H, Smith D. Deantigenation of human type B erythrocytes with Glycine max alpha-D-galactosidase. Biomed Pharmacother 1995;49:244-250 https://doi.org/10.1016/0753-3322(96)82630-8
  16. Vosnidou NC, Johnson SA, Mitra MM, Wells DC, Li CQ, Evans ML, Harmata MA, Walker JC, Smith DS. Seroconversion of type B to O erythrocytes using recombinant Glycine max $\alpha-D-galactosidase$. Biochem Mol Biol Int 1998;46:175-186
  17. Kruskall MS, AuBuchon JP, Anthony KY, Herschel L, Pickard C, Biehl R, Horowitz M, Brambilla DJ, Popovsky MA. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 2000;40:1290-1298 https://doi.org/10.1046/j.1537-2995.2000.40111290.x
  18. Lashley KS. Reflex secretion of the human parotid gland. J Exp Psychol 1916;1:461-465 https://doi.org/10.1037/h0073282
  19. Block PL, Brottman S. A method of submaxillary saliva collection without cannulization. N Y State Dent J 1962;28:116-118
  20. Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 1985;75:944-953 https://doi.org/10.1172/JCI111795
  21. Larson G, Falk P, Hoskins LC. Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 1988;263:10790-10798
  22. Falk P, Hoskins LC, Larson G. Bacteria of the human intestinal microbiota produce glycosidases specific for lacto-series glycosphingolipids. J Biochem (Tokyo) 1990;108:466-474 https://doi.org/10.1093/oxfordjournals.jbchem.a123223
  23. Al-Hashimi I, Levine MJ. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol 1989;34:289-295 https://doi.org/10.1016/0003-9969(89)90070-8
  24. Bradway SD, Bergey EJ, Jones PC, Levine MJ. Oral mucosal pellicle: Adsorption and transpeptidation of salivary components to buccal epithelial cells. Biochem J 1989;261:887-896 https://doi.org/10.1042/bj2610887
  25. Schenkels LCPM, Gururaja TL, Levine MJ. Salivary mucins: their role in oral mucosal barrier function and drug delivery, in Rathbone MJ (Ed). Oral mucosal drug delivery: New York 1996, Marcel Dekker Inc.,191-220