Intercellular Trafficking of Homeodomain Proteins

  • Kim, Seon-Won (Department of Food Science & Nutrition, Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Moon, Jun-Yeon (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Jung, Jin-Hee (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Chen, Xiongyan (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Shi, Chunlin (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Rim, Yeong-Gil (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kwon, Hey-Jin (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Jackson, David (Cold Spring Habor Laboratory) ;
  • Datla, Raju (Plant Biotechnology Institute, National Research Council of Canada) ;
  • Joliot, Alain (Biologie cellulaire des hom$\'{e}$prot$\'{e}$ines) ;
  • Kim, Jae-Yean (Division of Applied Life Science (BK21), Plant Molecular Biology & Biotechnology Research Center, Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • Published : 2005.01.01


Homeotic proteins have pivotal roles during the development of both plant and animals. Many homeotic proteins exert control over cell fate in cells where their genes are not expressed, i.e., in a non-cell autonomous manner. Cell-to-cell communication, which delivers critical information for position-dependent specification of cell fate, is an essential biological process in multicellular organisms. In plants, there are two pathways for intercellular communication that have been identified: the ligand/receptor-mediated apoplastic pathway and the plasmodesmata-mediated symplasmic pathway. Regulatory proteins and RNAs traffic symplasmically via plasmodesmata and play a critical role in intercellular communication. Thus, the non-cell autonomous function of homeotic proteins can be explained by the recent discovery of cell-to-cell trafficking of proteins or RNAs. This article specifically focuses on understanding the intercellular movement of homeodomain proteins, a family of homeotic proteins.


  1. Dawe, R. K. and Freeling, M. 1991. Cell lineage and its consequences in higher plants. Plant J. 1:3-8
  2. Hake, S. and Freeling, M. 1986. Analysis of genetic mosaics shows that the extraepidermal cell divisions in knotted1 mutant maize plants are induced by adjacent mesophyll cells. Nature 320:621-623
  3. Huala, E. and Sussex, I. M. 1993. Determination and Cell Interactions in Reproductive Meristems. Plant Cell 5:1157-1165
  4. Itaya, A., Woo, Y. M., Masuta, C., Bao, Y., Nelson, R. S. and Ding, B. 1998. Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol. 118:373-385
  5. Jackson, D. 2000. Opening up the communication channels: recent insights into plasmodesmal function. Curr. Opin. Plant Biol. 3:394-399
  6. Jackson, D. and Kim, J. Y. 2003. Dispatch. Intercellular signaling: an elusive player steps forth. Curr. Biol. 13:R349-R350
  7. Jackson, D., Veit, B. and Hake, S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405-413
  8. Kim, J. Y., Yuan, Z., Cilia, M., Khalfan-Jagani, Z. and Jackson, D. 2002. Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc. Natl. Acad. Sci. USA 99:4103-4108
  9. Kim, J. Y., Yuan, Z. and Jackson, D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351-4362
  10. Kragler, F., Monzer, J., Shash, K., Xoconostle-Cazares, B. and Lucas, W. J. 1998. cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J. 15:367-381
  11. Kragler, F., Monzer, J., Xoconostle-Cazares, B. and Lucas, W. J. 2000. Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO J. 19:2856-2868
  12. Long, J. A., Moan, E. I., Medford, J. I. and Barton, M. K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66-69
  13. Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. and Hake, S. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980-1983
  14. Lucas, W. J., Ding, B. and C. Van der Schoot. 1993. Plasmodesmata and the supracellular nature of plants. New Phytol. 125:435-476
  15. Maizel, A., Bensaude, O., Prochiantz, A. and Joliot, A. 1999. A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126:3183-3190
  16. Maizel, A., Tassetto, M., Filhol, O., Cochet, C., Prochiantz, A. and Joliot, A. 2002. Engrailed homeoprotein secretion is a regulated process. Development 129:3545-3553
  17. Oparka, K. J., Roberts, A. G., Boevink, P., Santa Cruz, S., Roberts, I., Pradel, K. S., Imlau, A., Kotlizky, G., Sauer, N. and Epel, B. 1999. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743-754
  18. Poethig, R. S. 1987. Clonal analysis of cell lineage patterns in plant development. Am. J. Bot. 74:581-594
  19. Prochiantz, A. and Joliot, A. 2003. Can transcription factors function as cell-cell signalling molecules? Nat. Rev. Mol. Cell Biol. 4: 814-819
  20. Reichel, C., Mas, P. and Beachy, R. N. 1999. The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sci. 4: 458-462
  21. Rustom, A., Saffrich, R., Markovic, I., Walther, P. and Gerdes, H. 2004. Nanotubular highways for intercellular organelle transport. Science 303:1007-1010
  22. Satina, S., Blakeslee, A. F. and Avery, A. G. 1940. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27: 895-905
  23. Sinha, N. 1999. Leaf Development in Angiosperms. Annu Rev Plant Physiol. Plant Mol. Biol. 50:419-446
  24. Trotochaud, A. E., Hao, T., Wu, G., Yang, Z. and Clark, S. E. 1999. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393- 406
  25. Venglat, S. P., Dumonceaux, T., Rozwadowski, K., Parnell, L., Babic, V., Keller, W., Martienssen, R., Selvaraj, G. and Datla, R. 2002. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc. Natl. Acad. Sci. USA 99:4730-4735
  26. Vollbrecht, E., Reiser, L. and Hake, S. 2000. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161-3172
  27. Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. 1991. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241-243
  28. Xoconostle-Cazares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H. L., Monzer, J., Yoo, B. C., McFarland, K. C., Franceschi, V. R. and Lucas, W. J. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94-98
  29. Zambryski, P. and Crawford, K. 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol. 16:393-421