Renal Precursor Cell Transplantation Using Biodegradable Polymer Scaffolds

  • KIM , SANG-SOO (Department of Chemical Engineering, Hanyang University, Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University) ;
  • PARK, HEUNG-JAE (Department of Urology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University) ;
  • HAN, JOUNG-HO (Department of Pathology, Samsung Medical Center, School of Medicine, Sungkyunkwan University) ;
  • PARK, MIN-SUN (Department of Chemical Engineering, Hanyang University) ;
  • PARK, MOON-HYANG (Department of Pathology, College of Medicine, Hanyang University) ;
  • SONG, KANG-WON (Department of Pathology, College of Medicine, Hanyang University) ;
  • JOO, KWAN-JOONG (Department of Urology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University) ;
  • CHOI, CHA-YONG (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, School of Chemical Engineering, Seoul National University) ;
  • KIM, BYUNG-SOO (Department of Chemical Engineering, Hanyang University)
  • Published : 2005.02.01

Abstract

End-stage renal disease is a fatal and devastating disease that is caused by progressive and irreversible loss of functioning nephrons in the kidney. Dialysis and renal transplantation are the common treatments at present, but these treatments have severe limitations. The present study investigated the possibility of reconstructing renal tissues by transplantation of renal precursor cells to replace the current treatments for end-stage renal disease. Embryonic renal precursor cells, freshly isolated from metanephroi of rat fetus at day 15 post-gestation, were seeded on biodegradable polymer scaffolds and transplanted into peritoneal cavities of athymic mice for three weeks. Histologic sections stained with hematoxylin & eosin and periodic acid-Schiff revealed the formation of primitive glomeruli, tubules, and blood vessels, suggesting the potential of embryonic renal precursor cells to reconstitute renal tissues. Immunohistochemical staining for proliferating cell nuclear antigen, a marker of proliferating cells, showed intensive nuclear expression in the regenerated renal structures, suggesting renal tissue reconstitution by transplanted embryonic renal precursor cells. This study demonstrates the reconstitution of renal tissue in vivo by transplanting renal precursor cells with biodegradable polymer scaffolds, which could be utilized as a new method for partial or full restoration of renal structure and function in the treatment of end-stage renal disease.

References

  1. Al-Awqati, Q. and J. A. Oliver. 2002. Stem cells in the kidney. Kidney Int. 61: 387- 395 https://doi.org/10.1046/j.1523-1755.2002.00164.x
  2. Amiel, G. E. and A. Atala. 1999. Current and future modalities for functional renal replacement. Urol. Clin. North Am. 26: 235- 246 https://doi.org/10.1016/S0094-0143(99)80019-6
  3. Dekel, B., T. Burakova, H. Ben-Hur, H. Marcus, R. Oren, J. Laufer, and Y. Reisner. 1997. Engraftment of human kidney tissue in rat radiation chimera II: Human fetal kidneys display reduced immunogenicity to adoptively transferred human peripheral blood mononuclear cells and exhibit rapid growth and development. Transplantation 64: 1550-1558 https://doi.org/10.1097/00007890-199712150-00008
  4. Dekel, B., N. Arnariglio, N. Kaminski, A. Schwartz, E. Goshen, F. D. Arditti, I. Tsarfaty, J. H. Passwell, Y. Reisner, and G. Rechavi. 2002. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J. Am. Soc. Nephrol. 13: 977- 990
  5. Dekel, B., T. Burakova, F. D. Arditti, S. Reich-Zeliger, O. Milstein, S. Aviel-Ronen, G. Rechavi, N. Friedman, N. Kaminski, J. H. Pass well, and Y. Reisner. 2003. Human and porcine early kidney precursors as a new source for transplantation. Nature Med. 9: 53- 60 https://doi.org/10.1038/nm812
  6. Hammerman, M. R. 2002. Transplantation of developing kidneys. Transplant. Rev. 16: 62- 71 https://doi.org/10.1053/trre.2002.29160
  7. Hammerman, M. R. 2003. Tissue engineering the kidney. Kidney Int. 63: 1195- 1204 https://doi.org/10.1046/j.1523-1755.2003.00890.x
  8. Humes, D. H., D. A. Buffington, S. M. MacKay, A. J. Funke, and W. F. Weitzel. 1999. Replacement of renal function in uremic animals with a tissue engineered kidney. Nature Biotechnol. 17: 451- 455 https://doi.org/10.1038/8626
  9. Hyink, D. P., D. C. Tucker, P. L. St. John, V. Leardkamolkarn, M. A. Accavitti, C. K. Abrass, and D. R. Abrahamson. 1996. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am. J. Physiol. 270: F886-F889
  10. Kim, B. S., D. J. Mooney, and A. Atala. 2000. Genitourinary system, pp. 655-667. In R. P. Lanza, R. Langer, and J. Vacanti (eds.), Principles of Tissue Engineering, Academic Press, San Diego, California, U.S.A.
  11. Kim, B. S., S. I. Jeong, S. W. Cho, J. Nikolovski, D. J. Mooney, S. H. Lee, O. Jeon, T. W. Kim, S. H. Lim, Y. S. Hong, C. Y Choi, Y. M. Lee, S. H. Kim, and Y. H. Kim. 2003. Tissue engineering of smooth muscle under a mechanically dynamic condition. J. Microbiol. Biotechnol. 13: 841- 845
  12. Kim, D. I., H. J. Park, H. S. Eo, S. W. Suh, J. H. Hong, M. J. Lee, J. S. Kim, I. S. Jang, and B. S. Kim. 2004. Comparati ve study of seeding and culture methods to vascular smooth muscle cells on biodegradable scaffold. J. Microbiol. Biotechnol. 14: 707-714
  13. Kim, S. K., S. H. Yu, J. H. Lee, J. Y Lee, A. Rademacher, D. H. Lee, and J. K. Park. 2001. Effect of collagen concentration on the viability and metabolic function of encapsulated hepatocytes. J. Microbiol. Biotechnol. 11: 423- 427
  14. Koseki, C., D. Herzlinger, and Q. Al-Awqati. 1991. Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am. J. Physiol. 261: C550- C554 https://doi.org/10.1152/ajpcell.1991.261.3.C550
  15. Kun, N. and K. H. Park. 2004. Immobilization of Arg-GlyAsp (RGD) sequence in sugar-containing copolymer for culturing fibroblast cells. J. Microbiol. Biotechnol. 14: 193-196
  16. Langer, R. and J. P. Vacanti. 1993. Tissue engineering. Science 260: 920- 926 https://doi.org/10.1126/science.8493529
  17. Lanza, R. P, H. Y. Chung, J. J. Yoo, P. J. Wettstein, C. Blackwell, N. Borson, E. Hofmeister, G. Schuch, S. Soker, C. T. Moraes, M. D. West, and A. Atala. 2002. Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnol. 20: 689- 696 https://doi.org/10.1038/nbt703
  18. Lee, D. H., J. H. Lee, J. E. Choi, Y. J. Kim, S. K. Kim, and J. K. Park. 2002. Determination of optimum aggregates of porcine hepatocytes as a cell source of a bioartificialliver. J. Microbiol. Biotechnol. 12: 735- 739
  19. MacKay, S. M., A. J. Funke, D. A. Buffington, and H. D. Humes. 1998. Tissue engineering of a bioartificial renal tubule. Am. Soc. Artif. Intern. Organs J. 44: 179- 183 https://doi.org/10.1097/00002480-199805000-00011
  20. Oliver, J. A., J. Barasch, J. Yang, D. Herzlinger, and Q. AlAwqati. 2002. Metanephric mesenchyme contains embryonic renal stem cells. Am. J. Physiol. Renal Physiol. 283: F799-F809
  21. Rogers, S. A., J. A. Lowell, N. A. Hammerman, and M. R. Hammerman. 1998. Transplantation of developing metanephroi into adult rats. Kidney Int. 54: 27- 37 https://doi.org/10.1046/j.1523-1755.1998.00971.x
  22. Santavirta, S., Y. T. Konttinen, T. Saito, M. Gronblad, E. Partio, P. Kernppinen, and P. Rokkanen. 1990. Immune response to polyglycolic acid implants. J. Bone Joint Surg. Br. 72: 597- 600
  23. Yoo, J. J., T. G. Kwon, and A. Atala. 2002. Intracorporeal kidney, pp. 999- 1003. In A. Atala, and R. P Lanza, (eds.), Methods of Tissue Engineering: Academic Press, San Diego, California, U.S.A.
  24. Woolf, A. S., S. J. Palmer, M. L. Snow, and L. G. Fine. 1990. Creation of a functioning chimeric mammalian kidney. Kidney Int. 38: 991- 997 https://doi.org/10.1038/ki.1990.303