Development and Characterization of Polymer Electrolyte Membranes Containing Polysilsesquioxane Spheres

Polysilsesquioxane 구를 함유하는 고분자 전해질 막 제조 및 특성 연구

  • Hong Seong Uk (Department of Chemical Engineering, Hanbat National University) ;
  • Cheon Hun Sang (Department of Chemical Engineering, Hanbat National University) ;
  • Kim Young Baik (Department of Nano and Polymer Materials Engineering, Paichai University) ;
  • Park Hun Hwee (Department of Environmental Engineering, Hoseo University)
  • 홍성욱 (국립한밭대학교 화학공학과) ;
  • 천훈상 (국립한밭대학교 화학공학과) ;
  • 김영백 (배재대학교 나노고분자재료공학과) ;
  • 박헌휘 (호서대학교 환경공학과)
  • Published : 2005.03.01

Abstract

Polymer electrolyte membranes containing polysilsesquioxane (PSQ) spheres were prepared with the blend of sulfonated poly(ether ether ketone) (SPEEK) (60%) and poly(ether sulfone) (PES) (40%). The amount of PSQ spheres was fixed at 10 wt%. The prepared polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity, and ion exchange capacity. In all cases, both methanol permeability and proton conductivity of the polymer electrolyte membranes containing PSQ spheres were lower than the values of Nafion 117 and higher than those of SPEEK/PES (6:4) blend without PSQ spheres. The experimental results indicated that the polymer electrolyte membranes containing MS64 and VTMOS spheres were the best choice in terms of the ratio of proton conductivity to methanol permeability.

References

  1. K. Kordesch and G. Simader, 'Fuel Cells and their Applications', VCH, Weinheim (1996)
  2. J. Larminie and A. Dicks, 'Fuel Cell Systems Explained', John Wiley & Sons, West Sussex, England (2000)
  3. Y. M. Lee and H. B. Park, 'Development of membrane materials for direct methanol fuel cell', Membrane J., 10, 103 (2000)
  4. A. Heinzel and V. M. Barragan, 'A review of the state of art of the methanol crossover in direct methanol fuel cells', J. Power Source, 84, 70 (1999)
  5. S. Koter, P. Pitrowski, and J. Kerres, 'Comparative investigations of ion exchange membranes', J. Membrane Sci., 153, 83 (1999)
  6. J. Cruickshank and K. Scott, 'The degree and effect of methanol crossover in the direct methanol fuel cell', J. Power Source, 70, 40 (1998)
  7. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, 'Performance evaluation of a Nafion/silica oxide hybrid membrane for direct methanol fuel cell', J. Power Source, 106, 173 (2002)
  8. Z. G. Shao, P. Joghee, and I. M. Hsing, 'Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cell', J. Membrane Sci., 229, 43 (2004)
  9. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, 'Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell application', J. Membrane Sci., 173, 17 (2000)
  10. L. Li, J. Zhang, and Y. Wang, 'Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell', J. Membrane Sci., 226, 159 (2003)
  11. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, 'Inorganic modification of proton conductive polymer membranes for direct methanol fuel cell', J. Membrane Sci., 203, 215 (2002)
  12. J. H. Chang, J. H. Park, G. G. Park, C. S. Kim, and O. O. Park, 'Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials', J. Power Source, 124, 18 (2003)
  13. H. S. Cheon, C. G. Lee, and S. U. Hong, 'Characterization of polymer blends of poly( ether sulfone )/sulfonated poly( ether ether ketone) for DMFC', Korean J. Ind. Eng. Chem., 16, 144 (2005)
  14. F. Helmer and M. Metzmann, European Patent 0574 791 A2 (1993)