Design of GA-Fuzzy Precompensator of TCSC-PSS for Enhancement of Power System Stability

전력계통 안정도 향상을 위한 TCSC 안정화 장치의 GA-퍼지 전 보상기 설계

  • 왕용필 (동아대 전기전자컴퓨터공학부) ;
  • 정문규 (한국전력공사 창원전력관리처) ;
  • 정형환 (동아대 전기전자컴퓨터공학부)
  • Published : 2005.02.01

Abstract

In this paper, we design the GA-fuzzy precompensator of a Power System Stabilizer for Thyristor Controlled Series Capacitor(TCSC-PSS) for enhancement of power system stability. Here a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for TCSC-PSS. This scheme is easily implemented by adding a fuzzy precompensator to an existing TCSC-PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Nonlinear simulation results show that the proposed control technique is superior to conventional TCSC-PSS in dynamic responses over the wide range of operating conditions and in convinced robust and reliable in view of structure.

References

  1. N. G. Hingorani and L. Gyugyi, 'Understanding FACTS', IEEE Press, 2000
  2. M. Erche et al, 'Improvement of Power System Performance Using Power Electronics Equipment', CIGRE Paper, 14/37/38-02, Paris, 1992
  3. E. Larsen et al, 'Benefits of Thyristor Controlled Series Compensation', CIGRE Paper, 14/37/38-04, Paris, 1992
  4. N. Hingorani, 'Flexible AC Transmission', IEEE Spectrum, Vol. 30, No. 4, pp. 40-45, 1993 https://doi.org/10.1109/6.206621
  5. R. Adapa et al, 'Proposed Terms and Definitions for Flexible AC Transmission System(FACTS)', IEEE Trans. on Power Delivery, Vol. 12, No. 4, pp. 1848-1853, 1997 https://doi.org/10.1109/61.634216
  6. J. J. Paserba et al, 'A Thyristor Controlled Series Compensation Model for Power System Stability Analysis', IEEE Trans, on Power Delivery, Vol. 10, pp. 1471-1478, 1995 https://doi.org/10.1109/61.400931
  7. 한전전력연구원, 'FACTS 계통운용 기술개발 연구', 1999
  8. F. P. Demello and C. Concordia, 'Concepts of synchronous machine stability as affected by excitation control', IEEE Trans. on PAS, Vol. 88, No. 4, pp. 189-202, 1969 https://doi.org/10.1109/TPAS.1969.292452
  9. P. Kundur, D. C. Lee and H. M. Zein El-Din, 'Power System Stabilizers for Thermal Unit : Analytical techniques and on-site validation', IEEE Trans. on PAS, Vol. PAS-1, pp. 81-95, 1981 https://doi.org/10.1109/TPAS.1981.316890
  10. H. Othman et al, 'On the Design of Robust Power System Stabilizers', Proceedings of the 28th Conference on Decision and Control, Tampa, Florida, pp. 1853-1857, 1989 https://doi.org/10.1109/CDC.1989.70478
  11. Y. N. Yu, 'Electric Power System Dynamics', Academic Press 1983
  12. Chen X et al, 'Controlled series compensation for improving the stability of multimachine power systems', IEE Proc. C, pp. 361-366, 1995
  13. Chang J and Chow J, 'Time optimal series capacitor control for damping inter-area modes in interconnected power systems,' IEEE Trans, on PWRS, pp. 215-221, 1997 https://doi.org/10.1109/59.574942
  14. W. Gu. and K. E. Bollinger, 'A Self-tuning Power System Stabilizer for Wide-range Synchronous Generator Operation', IEEE Trans. on PWRS, Vol. 4, No. 3, pp. 1191-1199, 1989 https://doi.org/10.1109/59.32617
  15. C. X. Mao et al, 'Studies of Real-time Adaptive Optimal Excitation Controller and Adaptive Optimal Power System Stabilizer', IEEE Trans. on Energy Conversion. Vol. 7, No. 3, pp. 498-505, 1992 https://doi.org/10.1109/60.148583
  16. M. Hassan, O. P. Malik and G. S. Hope, 'A Fuzzy Logic based Stabilizer for a Synchronous Machine', IEEE Trans. on Energy Conversion, Vol. 6, No. 3, pp. 407-413, 1991 https://doi.org/10.1109/60.84314
  17. Y. Zhang et al, 'An Artificial Neural Network based Adaptive Power System Stabilizer', IEEE Trans. on Energy Conversion, Vol. 8, No. 1, pp. 71-77, 1993 https://doi.org/10.1109/60.207408
  18. 정형환, 왕용필, 정동일, 정문규, '유전 알고리즘을 이용한 전력시스템 안정화 장치의 최적 파라미터 선정', 대한전기학회 논문지 ,Vol. 48A, No.6, pp. 683-691, 1999
  19. Lie T, Shrestha G and Ghosh A, 'Design and application of fuzzy logic control scheme for transient stability enhancement in power systems', Electric Power System Res., pp. 17-23, 1995 https://doi.org/10.1016/0378-7796(95)00922-5
  20. Zhao Q, Jiang J, 'A TCSC damping controller using robust control theory', Electrical Power and Energy Systems, pp. 25-33, 1998 https://doi.org/10.1016/S0142-0615(97)00042-2
  21. Dai X et al, 'Neural network ath-order inverse control of thyristor controlled series compensator', Electric Power System Res., pp. 19-27, 1998 https://doi.org/10.1016/S0378-7796(97)01217-0
  22. R. Babuska and P. Horacek, 'Laboratory eval2tion of fuzzy controllers', Preprints of the IFAC/IFIC/ IMACS Internal Symp. on Artificial Intelligence in Real-Time Control, Delft, pp. 263-268, 1992
  23. S.-Z. He, S. Tan and F.-L. Xu, 'Fuzzy self-tuning of PID controllers', Fuzzy Sets and Systems, Vol. 24, pp. 37-46, 1993 https://doi.org/10.1016/0165-0114(93)90183-I
  24. T. Hagglund and K. J. Astrom, 'Automatic tuning of PID controllers based on dominant pole design', Proc. IFAC Workshop on Adaptive Control of Chemical Processes, Frankfurt, 1985
  25. C. C. Hang, K. J. Astrom and W. K. Ho, 'Refinements of the Ziegler-Nichols tuning formula', IEE Proc. D, Vol, 138, No. 2, pp. 111-118, 1991 https://doi.org/10.1049/ip-d.1991.0015
  26. J. H. Kim, K. C. Kim and E. K. P. Chong, 'Fuzzy Precompensated PID Controllers, IEEE Trans. Cont. Syst. Tech., Vol. 2, No. 4, pp. 406-411, 1994 https://doi.org/10.1109/87.338660
  27. M. A. Abido, 'Pole placement technique for PSS and TCSC-based stabilizer design using simulated annealing', Electrical Power and Energy Systems, pp. 543-554, 2000 https://doi.org/10.1016/S0142-0615(00)00027-2