Contamination patterns of Listeria spp. in pork processing plants using random amplified polymorphic DNA

RAPD를 이용한 돈육 가공장의 Listeria 오염양상 분석

  • Ha, Sung-Yeol (Department of Veterinary Medicine, Kangwon National University) ;
  • Choi, Weon-Sang (Department of Biotechnology, College of Natural Science, Dongguk University) ;
  • Bahk, Gyung-Jin (HACCP Team, Korea Health Industry Development Institute) ;
  • Hong, Chong-Hae (Department of Veterinary Medicine, Kangwon National University)
  • Accepted : 2005.08.17
  • Published : 2005.09.22

Abstract

This study was carried out to understand the contamination patterns of Listeria in pork processing plants. A total of 402 samples were collected from carcass, pork during processing, surfaces of equipment and environment, and 238 isolates of Listeria species were identified. L. innocua was found in 64.7% of the isolates, L. monocytogenes in 33.2%, and L. welshimeri in 2.1%. Random amplified polymorphic DNA (RAPD) analysis performed to investigate the origin and routes of Listeria contamination, showed 21 composite types of L. monocytogenes and 26 composite types of L. innocua. It was confirmed that Listeria contamination begins with contaminated incoming carcass and ever-present contaminants in the processing environments. The persistence and dissemination of the same strain of L. monocytogenes and L. innocua throughout the processing line revealed that the sanitation standard operating procedure should be implemented to minimize the risk of colonization in the workplace. Molecular subtyping of L. innocua allowed us to tracing the possibility of cross-contamination during processing.

Acknowledgement

Supported by : 농림부

References

  1. 농림부.국립수의과학검역원. 축산물가공장 위해요소 중점관리기준(HACCP) 적용매뉴얼. p. 5-1, 2001. 12
  2. 식품의약품안전청. 2005 식중독예방사업계획: 식중독 발생동향분석. pp. 2-3. 2005
  3. 안상철, 홍종해. 돈육가공 작업환경에서 Listeria monocytogenes의 분리와 혈청형 분포조사. 한국식품위생학회지 1998, 13, 425-429
  4. 이철현, 손원근, 강호조. 가축사육장 및 작업장 폐수로부터 Listeria monocytogenes의 분리 및 분리균의 약제내성. 한국수의공중보건학회지 2000, 24, 9-15
  5. 임형근, 홍종해, 박경진, 최원상. Listeria spp.의 RAPD typing을 위한 Primer의 분리력 비교. 한국식품위생안전성학회지 2003, 18, 67-72
  6. 임형근, 홍종해, 박경진, 최원상, 리스테리아균의 특성분석을 위한 Molecular Typing 방법의 상호보완. 생명과학회지 2003, 13, 699-704
  7. 허정호, 손성기, 이주홍, 임삼규, 구정헌, 박영호, 조명희, 손원근, 강호조. 도축처리 단계별 도체 및 환경 재료에서 Listeria monocytogenes의 분리. 한국가축위생학회지 1997, 20, 69-78
  8. Aguado V, Vitas AI, García-Jalón I. Characterization of Listeria monocytogenes and Listeria innocua from a vegetable processing plant by RAPD and REA. Int J Food Microbiol 2004, 90, 341-347 https://doi.org/10.1016/S0168-1605(03)00313-1
  9. Boerlin P, Bannerman E, Ischer F, Rocourt J, Bille J. Typing Listeria monocytogenes: a comparison of random amplification of polymorphic DNA with 5 other methods. Res Microbiol 1995, 146, 35-49 https://doi.org/10.1016/0923-2508(96)80269-5
  10. Byun SK, Jung SC, Yoo HS. Random amplification of polymorphic DNA typing of Listeria monocytogenes isolated from meat. Int J Food Microbiol 2001, 69, 227-235 https://doi.org/10.1016/S0168-1605(01)00504-9
  11. Chasseignaux E, Gerault P, Toquin MT, Salvat G, Colin P, Ermel G. Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants. FEMS Microbiol Lett 2002, 210, 271-275 https://doi.org/10.1111/j.1574-6968.2002.tb11192.x
  12. Chavant P, Martinie B, Meylheuc T, BellonFontaine MN, Hebraud M. Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol. 2002, 68, 728-737 https://doi.org/10.1128/AEM.68.2.728-737.2002
  13. Choi WS, Hong CH. Rapid enumeration of Listeria monocytogenes in milk using competitive PCR. International J. Food Microbiol 2003, 84, 79-85 https://doi.org/10.1016/S0168-1605(02)00401-4
  14. Donnelly CW, Brackett RE, Doores S, Lee WH, Lovett J. Compendium of Methods for the Microbiological Examination of Foods. 3rd ed, pp. 637-663, American Public Health Association. Washingtom DC, 1992
  15. Faber JM, Addison CJ. RAPD typing for distinguishing species and strains in the genus Listeria. J Appl Bacteriol 1994, 66, 242-250
  16. Farber JM, Daley E. Presence and growth of Listeria monocytogenes in naturally-contaminated meats. Int J Food Microbiol 1994, 22, 33-42 https://doi.org/10.1016/0168-1605(94)90005-1
  17. Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 1991, 55, 476-511
  18. Fenlon DR, Wilson J, Donachie W. The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. J Appl Bacteriol 1996, 81, 641-650
  19. Franciosa G, Pourshaban M, Gianfranceschi M, Aureli P. Genetic typing of human and food isolates of Listeria monocytogenes from episodes of listeriosis. Eur J Epidemiol 1998, 14, 205-210 https://doi.org/10.1023/A:1007448210169
  20. Garcia E, Rodriguez JL, Gaya D, Medina M, Nunez M. Exogenous sources of Listeria contamination in rawewe's milk. J Food Prot 1996, 59, 950-954 https://doi.org/10.4315/0362-028X-59.9.950
  21. Giovannacci I, Ragimbeau C, Queguiner S, Salvat G, Vendeuvre JL, Carlier V, Ermel G. Listeria monocytogenes in pork slaughtering and cutting plants; use of RAPD, PFGE and PCR-REA for tracing and molecular epidemiology. Int J Food Microbiol 1999, 53, 127-140 https://doi.org/10.1016/S0168-1605(99)00141-5
  22. Gravani R. Incidence and control of Listeria in foodprocessing facilities. In : Ryser ET, Marth EH (eds.), Listeria, Listeriosis, and Food Safety, 2nd ed, pp. 657-709. Marcel Dekker. New York, 1999
  23. Gravesen A, Jacobsen T, Moller PL, Hansen F, Larsen AG, Knochel S. Genotyping of Listeria monocytogenes comparison of RAPD, ITS, and PFGE. Int J Food Microbiol 2000, 57, 43-51 https://doi.org/10.1016/S0168-1605(00)00234-8
  24. Greenwood MH, Roberts D, Burden P. The occurrence of Listeria species in milk and dairy products: a national survey in England and Wales. Int J Food Microbiol 1991, 12, 197-206 https://doi.org/10.1016/0168-1605(91)90070-6
  25. Jaradat ZW, Schutze GE, Bhunia AK. Genetic homogenety among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int J Food Microbiol 2002, 76, 1-10 https://doi.org/10.1016/S0168-1605(02)00050-8
  26. Jay JM. Prevalence of Listeria spp. in meat and poultry products. Food Control. 1996, 7, 209-214 https://doi.org/10.1016/S0956-7135(96)00043-6
  27. Junttila JR, Niemela SI, Hirn J. Minimum growth temperatures of Listeria monocytogenes and nonhaemolytic Listeria. J Appl Bacteriol 1988, 65, 321-327 https://doi.org/10.1111/j.1365-2672.1988.tb01898.x
  28. Kennedy M, Vugia D, Fiorentino T, Farley M, Smith K, Smith O, Cieslak P, Griffin P, the EIP FoodNet Working Group. FoodNet 1996 to 1998: Data on deaths and invasive illness demonstrate the severity of Salmonella and Listeria. 2nd International Conference on Emerging Infectious Diseases. Atlanta, GA, 2000
  29. Lehner A, Loncarevic S, Wagner M, Kreike J, Brandl E. A rapid differentiation of Listeria monocytogenes by use of PCR-SSCP in the listeriolysin O (hlyA) locus. J Microbiol Methods 1999, 34, 165-171 https://doi.org/10.1016/S0167-7012(98)00076-1
  30. Manzano M, Cocolin L, Cantoni C, Comi G. A rapid method for the identification and partial serotyping of Listeria monocytogenes in food by PCR and restriction enzyme analysis. Int J Food Microbiology 1998, 42, 207-212 https://doi.org/10.1016/S0168-1605(98)00086-5
  31. Martinez L, Rorvik LM, Brox V, Lassen J, Seppola M, Gram L, Fonnesbech-Vogel B. Genetic variability among isolates of Listeria monocytogenes from food products, clinical samples and processing environments, estimated by RAPD typing. Int J Food Microbiol 2003, 84, 285-297 https://doi.org/10.1016/S0168-1605(02)00423-3
  32. Rocourt J, Jacquet C, Reilly A. Epidemiology of human listeriosis and seafoods. Int J Food Microbiol 2000, 62, 197-209 https://doi.org/10.1016/S0168-1605(00)00336-6
  33. Rorvik LM, Aase B, Alvestad T, Caugant DA. Molecular epidemiological survey of Listeria monocytogenes in seafoods and seafood-processing plants. Appl Environ Microbiol 2000, 66, 4779-4784 https://doi.org/10.1128/AEM.66.11.4779-4784.2000
  34. Senczek. D, Stephan. R, Untermann. F. Pulsed-field gel electrophoresis (PFGE) typing of Listeria strains isolated from a meat processing plant over a 2-year period. Int J Food Microbiol. 2000, 62, 155-159 https://doi.org/10.1016/S0168-1605(00)00395-0
  35. Sommer P, Martin-Rouas C, Mettler E. Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Int J Food Microbiol 1999, 16, 503-515 https://doi.org/10.1006/fmic.1999.0267
  36. Swaminathan B, Rocourt J, Bille J. Manual of Clinical Microbiology, 6th ed. pp. 342-343, American Society for Microbiology, Washington DC, 1995
  37. Walker SJ, Stringer MF. Growth of Listeria monocytogenes and Aeromonas hydrophila at chill temperatures. J Appl Bacteriol 1987, 63, R20
  38. Walls I. Present status and future prospect of MRA application in USA. Quantitiative Microbial Risk Assessment of Foodborne Pathogens for Scientific Food Safety Management, pp. 45-67. Seoul, Korea, 2005
  39. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531-6535 https://doi.org/10.1093/nar/18.22.6531